
testfixtures Documentation
Release 4.13.0

Simplistix Ltd

November 02, 2016

Contents

1 Comparing objects and sequences 3

2 Mocking out objects and methods 17

3 Mocking dates and times 25

4 Testing logging 33

5 Testing output to streams 41

6 Testing with files and directories 43

7 Testing exceptions 55

8 Testing warnings 59

9 Testing use of the subprocess package 61

10 Testing with zope.component 67

11 Utilities 69

12 API Reference 73

13 Installation Instructions 85

14 Development 87

15 Changes 89

16 License 101

17 Indices and tables 103

i

ii

testfixtures Documentation, Release 4.13.0

TestFixtures is a collection of helpers and mock objects that are useful when writing unit tests or doc tests.

The sections below describe the use of the various tools included:

Contents 1

testfixtures Documentation, Release 4.13.0

2 Contents

CHAPTER 1

Comparing objects and sequences

Python’s unittest package often fails to give very useful feedback when comparing long sequences or chunks
of text. It also has trouble dealing with objects that don’t natively support comparison. The functions and classes
described here alleviate these problems.

1.1 The compare function

The compare() function can be used as a replacement for assertEqual(). It raises an AssertionError
when its parameters are not equal, which will be reported as a test failure:

>>> from testfixtures import compare
>>> compare(1, 2)
Traceback (most recent call last):
...

AssertionError: 1 != 2

However, it allows you to specify a prefix for the message to be used in the event of failure:

>>> compare(1, 2, prefix='wrong number of orders')
Traceback (most recent call last):
...

AssertionError: wrong number of orders: 1 != 2

This is recommended as it makes the reason for the failure more apparent without having to delve into the code or
tests.

You can also optionally specify a suffix, which will be appended to the message on a new line:

>>> compare(1, 2, suffix='(Except for very large values of 1)')
Traceback (most recent call last):
...

AssertionError: 1 != 2
(Except for very large values of 1)

The expected and actual value can also be explicitly supplied, making it clearer as to what has gone wrong:

>>> compare(expected=1, actual=2)
Traceback (most recent call last):
...

AssertionError: 1 (expected) != 2 (actual)

The real strengths of this function come when comparing more complex data types. A number of common python
data types will give more detailed output when a comparison fails as described below:

3

http://docs.python.org/library/unittest.html#module-unittest
http://docs.python.org/library/unittest.html#unittest.TestCase.assertEqual

testfixtures Documentation, Release 4.13.0

1.1.1 sets

Comparing sets that aren’t the same will attempt to highlight where the differences lie:

>>> compare(set([1, 2]), set([2, 3]))
Traceback (most recent call last):
...

AssertionError: set not as expected:

in first but not second:
[1]

in second but not first:
[3]

1.1.2 dicts

Comparing dictionaries that aren’t the same will attempt to highlight where the differences lie:

>>> compare(dict(x=1, y=2, a=4), dict(x=1, z=3, a=5))
Traceback (most recent call last):
...

AssertionError: dict not as expected:

same:
['x']

in first but not second:
'y': 2

in second but not first:
'z': 3

values differ:
'a': 4 != 5

1.1.3 lists and tuples

Comparing lists or tuples that aren’t the same will attempt to highlight where the differences lie:

>>> compare([1, 2, 3], [1, 2, 4])
Traceback (most recent call last):
...

AssertionError: sequence not as expected:

same:
[1, 2]

first:
[3]

second:
[4]

4 Chapter 1. Comparing objects and sequences

testfixtures Documentation, Release 4.13.0

1.1.4 namedtuples

When two namedtuple() instances are compared, if they are of the same type, the description given will highlight
which elements were the same and which were different:

>>> from collections import namedtuple
>>> TestTuple = namedtuple('TestTuple', 'x y z')
>>> compare(TestTuple(1, 2, 3), TestTuple(1, 4, 3))
Traceback (most recent call last):
...

AssertionError: TestTuple not as expected:

same:
['x', 'z']

values differ:
'y': 2 != 4

1.1.5 generators

When two generators are compared, they are both first unwound into tuples and those tuples are then compared.

The generator helper is useful for creating a generator to represent the expected results:

>>> from testfixtures import generator
>>> def my_gen(t):
... i = 0
... while i<t:
... i += 1
... yield i
>>> compare(generator(1, 2, 3), my_gen(2))
Traceback (most recent call last):
...

AssertionError: sequence not as expected:

same:
(1, 2)

first:
(3,)

second:
()

Warning: If you wish to assert that a function returns a generator, say, for performance reasons, then you should
use strict comparison.

1.1.6 strings and unicodes

Comparison of strings can be tricky, particularly when those strings contain multiple lines; spotting the differences
between the expected and actual values can be hard.

To help with this, long strings give a more helpful representation when comparison fails:

1.1. The compare function 5

http://docs.python.org/library/collections.html#collections.namedtuple

testfixtures Documentation, Release 4.13.0

>>> compare("1234567891011", "1234567789")
Traceback (most recent call last):
...

AssertionError:
'1234567891011'
!=
'1234567789'

Likewise, multi-line strings give unified diffs when their comparison fails:

>>> compare("""
... This is line 1
... This is line 2
... This is line 3
... """,
... """
... This is line 1
... This is another line
... This is line 3
... """)
Traceback (most recent call last):
...

AssertionError:
--- first
+++ second
@@ -1,5 +1,5 @@

This is line 1
- This is line 2
+ This is another line

This is line 3

Such comparisons can still be confusing as white space is taken into account. If you need to care about whitespace
characters, you can make spotting the differences easier as follows:

>>> compare("\tline 1\r\nline 2"," line1 \nline 2", show_whitespace=True)
Traceback (most recent call last):
...

AssertionError:
--- first
+++ second
@@ -1,2 +1,2 @@
-'\tline 1\r\n'
+' line1 \n'
'line 2'

However, you may not care about some of the whitespace involved. To help with this, compare() has two options
that can be set to ignore certain types of whitespace.

If you wish to compare two strings that contain blank lines or lines containing only whitespace characters, but where
you only care about the content, you can use the following:

compare('line1\nline2', 'line1\n \nline2\n\n',
blanklines=False)

If you wish to compare two strings made up of lines that may have trailing whitespace that you don’t care about, you
can do so with the following:

compare('line1\nline2', 'line1 \t\nline2 \n',
trailing_whitespace=False)

6 Chapter 1. Comparing objects and sequences

testfixtures Documentation, Release 4.13.0

1.1.7 Recursive comparison

Where compare() is able to provide a descriptive comparison for a particular type, it will then recurse to do the
same for the elements contained within objects of that type. For example, when comparing a list of dictionaries, the
description will not only tell you where in the list the difference occurred, but also what the differences were within
the dictionaries that weren’t equal:

>>> compare([{'one': 1}, {'two': 2, 'text':'foo\nbar\nbaz'}],
... [{'one': 1}, {'two': 2, 'text':'foo\nbob\nbaz'}])
Traceback (most recent call last):
...

AssertionError: sequence not as expected:

same:
[{'one': 1}]

first:
[{'text': 'foo\nbar\nbaz', 'two': 2}]

second:
[{'text': 'foo\nbob\nbaz', 'two': 2}]

While comparing [1]: dict not as expected:

same:
['two']

values differ:
'text': 'foo\nbar\nbaz' != 'foo\nbob\nbaz'

While comparing [1]['text']:
--- first
+++ second
@@ -1,3 +1,3 @@
foo

-bar
+bob
baz

This also applies to any comparers you have provided, as can be seen in the next section.

1.1.8 Providing your own comparers

When using compare() frequently for your own complex objects, it can be beneficial to give more descriptive output
when two objects don’t compare as equal.

Note: If you are reading this section as a result of needing to test objects that don’t natively support comparison, or
as a result of needing to infrequently compare your own subclasses of python basic types, take a look at Comparison
objects as this may well be an easier solution.

As an example, suppose you have a class whose instances have a timestamp and a name as attributes, but you’d like to
ignore the timestamp when comparing:

from datetime import datetime

class MyObject(object):

1.1. The compare function 7

testfixtures Documentation, Release 4.13.0

def __init__(self, name):
self.timestamp = datetime.now()
self.name = name

To compare lots of these, you would first write a comparer:

def compare_my_object(x, y, context):
if x.name == y.name:

return
return 'MyObject named %s != MyObject named %s' % (

context.label('x', repr(x.name)),
context.label('y', repr(y.name)),
)

Then you’d register that comparer for your type:

from testfixtures.comparison import register
register(MyObject, compare_my_object)

Now, it’ll get used when comparing objects of that type, even if they’re contained within other objects:

>>> compare([1, MyObject('foo')], [1, MyObject('bar')])
Traceback (most recent call last):
...

AssertionError: sequence not as expected:

same:
[1]

first:
[<MyObject ...>]

second:
[<MyObject ...>]

While comparing [1]: MyObject named 'foo' != MyObject named 'bar'

From this example, you can also see that a comparer can indicate that two objects are equal, for compare()‘s
purposes, by returning None:

>>> MyObject('foo') == MyObject('foo')
False
>>> compare(MyObject('foo'), MyObject('foo'))

You can also see that you can, and should, use the context object passed in to add labels to the representations of the
objects being compared if the comparison fails:

>>> compare(expected=MyObject('foo'), actual=MyObject('bar'))
Traceback (most recent call last):
...

AssertionError: MyObject named 'foo' (expected) != MyObject named 'bar' (actual)

It may be that you only want to use a comparer or set of comparers for a particular test. If that’s the case, you can pass
compare() a comparers parameter consisting of a dictionary that maps types to comparers. These will be added
to the global registry for the duration of the call:

>>> compare(MyObject('foo'), MyObject('bar'),
... comparers={MyObject: compare_my_object})
Traceback (most recent call last):

8 Chapter 1. Comparing objects and sequences

testfixtures Documentation, Release 4.13.0

...
AssertionError: MyObject named 'foo' != MyObject named 'bar'

A full list of the available comparers included can be found below the API documentation for compare(). These
make good candidates for registering for your own classes, if they provide the necessary behaviour, and their source is
also good to read when wondering how to implement your own comparers.

You may be wondering what the context object passed to the comparer is for; it allows you to hand off comparison
of parts of the two objects currently being compared back to the compare() machinery, it also allows you to pass
options to your comparison function.

For example, you may have an object that has a couple of dictionaries as attributes:

from datetime import datetime

class Request(object):
def __init__(self, uri, headers, body):

self.uri = uri
self.headers = headers
self.body = body

When your tests encounter instances of these that are not as expected, you want feedback about which bits of the
request or response weren’t as expected. This can be achieved by implementing a comparer as follows:

def compare_request(x, y, context):
uri_different = x.uri != y.uri
headers_different = context.different(x.headers, y.headers, '.headers')
body_different = context.different(x.body, y.body, '.body')
if uri_different or headers_different or body_different:

return 'Request for %r != Request for %r' % (
x.uri, y.uri

)

Note: A comparer should always return some text when it considers the two objects it is comparing to be different.

This comparer can either be registered globally or passed to each compare() call and will give detailed feedback
about how the requests were different:

>>> compare(Request('/foo', {'method': 'POST'}, {'my_field': 'value_1'}),
... Request('/foo', {'method': 'GET'}, {'my_field': 'value_2'}),
... comparers={Request: compare_request})
Traceback (most recent call last):
...

AssertionError: Request for '/foo' != Request for '/foo'

While comparing .headers: dict not as expected:

values differ:
'method': 'POST' != 'GET'

While comparing .headers['method']: 'POST' != 'GET'

While comparing .body: dict not as expected:

values differ:
'my_field': 'value_1' != 'value_2'

While comparing .body['my_field']: 'value_1' != 'value_2'

1.1. The compare function 9

testfixtures Documentation, Release 4.13.0

As an example of passing options through to a comparer, suppose you wanted to compare all decimals in a nested
data structure by rounding them to a number of decimal places that varies from test to test. The comparer could be
implemented and registered as follows:

from decimal import Decimal
from testfixtures.comparison import register

def compare_decimal(x, y, context):
precision = context.get_option('precision', 2)
if round(x, precision) != round(y, precision):

return '%r != %r when rounded to %i decimal places' % (
x, y, precision

)

register(Decimal, compare_decimal)

Now, this comparer will be used for comparing all decimals and the precision used will be that passed to compare():

>>> expected_order = {'price': Decimal('1.234'), 'quantity': 5}
>>> actual_order = {'price': Decimal('1.236'), 'quantity': 5}
>>> compare(expected_order, actual_order, precision=1)
>>> compare(expected_order, actual_order, precision=3)
Traceback (most recent call last):
...

AssertionError: dict not as expected:

same:
['quantity']

values differ:
'price': Decimal('1.234') != Decimal('1.236')

While comparing ['price']: Decimal('1.234') != Decimal('1.236') when rounded to 3 decimal places

If no precision is passed, the default of 2 will be used:

>>> compare(Decimal('2.006'), Decimal('2.009'))
>>> compare(Decimal('2.001'), Decimal('2.009'))
Traceback (most recent call last):
...

AssertionError: Decimal('2.001') != Decimal('2.009') when rounded to 2 decimal places

1.1.9 Ignoring __eq__

Some objects, such as those from the Django ORM, have pretty broken implementations or __eq__. Since
compare() normally relies on this, it can result in objects appearing to be equal when they are not.

Take this class, for example:

class OrmObj(object):
def __init__(self, a):

self.a = a
def __eq__(self, other):

return True
def __repr__(self):

return 'OrmObj: '+str(self.a)

If we compare normally, we erroneously understand the objects to be equal:

10 Chapter 1. Comparing objects and sequences

testfixtures Documentation, Release 4.13.0

>>> compare(actual=OrmObj(1), expected=OrmObj(2))

In order to get a sane comparison, we need to both supply a custom comparer as described above, and use the
ignore_eq parameter:

def compare_orm_obj(x, y, context):
if x.a != y.a:

return 'OrmObj: %s != %s' % (x.a, y.a)

>>> compare(actual=OrmObj(1), expected=OrmObj(2),
... comparers={OrmObj: compare_orm_obj}, ignore_eq=True)
Traceback (most recent call last):
...
AssertionError: OrmObj: 2 != 1

1.1.10 Strict comparison

If is it important that the two values being compared are of exactly the same type, rather than just being equal as far as
Python is concerned, then the strict mode of compare() should be used.

For example, these two instances will normally appear to be equal provided the elements within them are the same:

>>> TypeA = namedtuple('A', 'x')
>>> TypeB = namedtuple('B', 'x')
>>> compare(TypeA(1), TypeB(1))

If this type difference is important, then the strict parameter should be used:

>>> compare(TypeA(1), TypeB(1), strict=True)
Traceback (most recent call last):
...

AssertionError: A(x=1) (<class '__main__.A'>) != B(x=1) (<class '__main__.B'>)

1.2 Comparison objects

Another common problem with the checking in tests is that not all objects support comparison and nor should they
need to. For this reason, TextFixtures provides the Comparison class.

This class lets you instantiate placeholders that can be used to compare expected results with actual results where
objects in the actual results do not support useful comparison.

Comparisons will appear to be equal to any object they are compared with that matches their specification. For
example, take the following class:

class SomeClass:

def __init__(self, x, y):
self.x, self.y = x, y

Normal comparison doesn’t work, which makes testing tricky:

>>> SomeClass(1, 2) == SomeClass(1, 2)
False

Here’s how this comparison can be done:

1.2. Comparison objects 11

testfixtures Documentation, Release 4.13.0

>>> from testfixtures import Comparison as C
>>> C(SomeClass, x=1, y=2) == SomeClass(1, 2)
True

Perhaps even more importantly, when a comparison fails, its representation changes to give information about what
went wrong. The common idiom for using comparisons is in conjuction with assertEqual() or compare():

>>> compare(C(SomeClass, x=2), SomeClass(1, 2))
Traceback (most recent call last):
...

AssertionError:
<C(failed):...SomeClass>
x:2 != 1
y:2 not in Comparison
</C> != <...SomeClass...>

The key is that the comparison object actually stores information about what it was last compared with. The following
example shows this more clearly:

>>> c = C(SomeClass, x=2)
>>> print(repr(c))

<C:...SomeClass>
x:2
</C>

>>> c == SomeClass(1, 2)
False
>>> print(repr(c))

<C(failed):...SomeClass>
x:2 != 1
y:2 not in Comparison
</C>

Note: assertEqual() has regressed in Python 3.4 and will now truncate the text shown in assertions with no
way to configure this behaviour. Use compare() instead, which will give you other desirable behaviour as well as
showing you the full output of failed comparisons.

1.2.1 Types of comparison

There are several ways a comparison can be set up depending on what you want to check.

If you only care about the class of an object, you can set up the comparison with only the class:

>>> C(SomeClass) == SomeClass(1, 2)
True

This can also be achieved by specifying the type of the object as a dotted name:

>>> import sys
>>> C('types.ModuleType') == sys
True

Alternatively, if you happen to have a non-comparable object already around, comparison can be done with it:

12 Chapter 1. Comparing objects and sequences

http://docs.python.org/library/unittest.html#unittest.TestCase.assertEqual
http://docs.python.org/library/unittest.html#unittest.TestCase.assertEqual

testfixtures Documentation, Release 4.13.0

>>> C(SomeClass(1,2)) == SomeClass(1,2)
True

If you only care about certain attributes, this can also easily be achieved with the strict parameter:

>>> C(SomeClass, x=1, strict=False) == SomeClass(1, 2)
True

The above can be problematic if you want to compare an object with attibutes that share names with parameters to the
Comparison constructor. For this reason, you can pass the attributes in a dictionary:

>>> compare(C(SomeClass, {'strict':3}, strict=False), SomeClass(1, 2))
Traceback (most recent call last):
...

AssertionError:
<C(failed):...SomeClass>
strict:3 not in other
</C> != <...SomeClass...>

1.2.2 Gotchas

There are a few things to be careful of when using comparisons:

• The default strict comparison cannot be used with a class such as the following:

class NoVars(object):
__slots__ = ['x']

If you try, you will get an error that explains the problem:

>>> C(NoVars, x=1) == NoVars()
Traceback (most recent call last):
...
TypeError: <NoVars object at ...> does not support vars() so cannot do strict comparison

Comparisons can still be done with classes that don’t support vars(), they just need to be non-strict:

>>> nv = NoVars()
>>> nv.x = 1
>>> C(NoVars, x=1, strict=False) == nv
True

• If the object being compared has an __eq__ method, such as Django model instances, then the Comparison
must be the first object in the equality check.

The following class is an example of this:

class SomeModel:
def __eq__(self,other):

if isinstance(other,SomeModel):
return True

return False

It will not work correctly if used as the second object in the expression:

>>> SomeModel()==C(SomeModel)
False

However, if the comparison is correctly placed first, then everything will behave as expected:

1.2. Comparison objects 13

testfixtures Documentation, Release 4.13.0

>>> C(SomeModel)==SomeModel()
True

• It probably goes without saying, but comparisons should not be used on both sides of an equality check:

>>> C(SomeClass)==C(SomeClass)
False

1.3 Round Comparison objects

When comparing numerics you often want to be able to compare to a given precision to allow for rounding issues
which make precise equality impossible.

For these situations, you can use RoundComparison objects wherever you would use floats or Decimals, and they
will compare equal to any float or Decimal that matches when both sides are rounded to the specified precision.

Here’s an example:

from testfixtures import compare, RoundComparison as R

compare(R(1234.5678, 2), 1234.5681)

Note: You should always pass the same type of object to the RoundComparison object as you intend compare
it with. If the type of the rounded expected value is not the same as the type of the rounded value being compared
against it, a TypeError will be raised.

1.4 Range Comparison objects

When comparing orderable types just as numbers, dates and time, you may only know what range a value will fall
into. RangeComparison objects let you confirm a value is within a certain tolerance or range.

Here’s an example:

from testfixtures import compare, RangeComparison as R

compare(R(123.456, 789), Decimal(555.01))

Note: RangeComparison is inclusive of both the lower and upper bound.

1.5 String Comparison objects

When comparing sequences of strings, particularly those comping from things like the python logging package, you
often end up wanting to express a requirement that one string should be almost like another, or maybe fit a particular
regular expression.

For these situations, you can use StringComparison objects wherever you would use normal strings, and they
will compare equal to any string that matches the regular expression they are created with.

Here’s an example:

14 Chapter 1. Comparing objects and sequences

testfixtures Documentation, Release 4.13.0

from testfixtures import compare, StringComparison as S

compare(S('Starting thread \d+'),'Starting thread 132356')

1.6 Differentiating chunks of text

TextFixtures provides a function that will compare two strings and give a unified diff as a result. This can be handy as
a third parameter to assertEqual() or just as a general utility function for comparing two lumps of text.

As an example:

>>> from testfixtures import diff
>>> print(diff('line1\nline2\nline3',
... 'line1\nlineA\nline3'))
--- first
+++ second
@@ -1,3 +1,3 @@
line1

-line2
+lineA
line3

1.6. Differentiating chunks of text 15

http://docs.python.org/library/unittest.html#unittest.TestCase.assertEqual

testfixtures Documentation, Release 4.13.0

16 Chapter 1. Comparing objects and sequences

CHAPTER 2

Mocking out objects and methods

Mocking is the process of replacing chunks of complex functionality that aren’t the subject of the test with mock
objects that allow you to check that the mocked out functionality is being used as expected.

In this way, you can break down testing of a complicated set of interacting components into testing of each individ-
ual component. The behaviour of components can then be tested individually, irrespective of the behaviour of the
components around it.

There are a few implementations of mock objects in the python world. An excellent example and the one recommended
for use with TestFixtures is the Mock package: http://pypi.python.org/pypi/mock/

2.1 Methods of replacement

TestFixtures provides three different methods of mocking out functionality that can be used to replace functions,
classes or even individual methods on a class. Consider the following module:

testfixtures.tests.sample1

class X:

def y(self):
return "original y"

@classmethod
def aMethod(cls):

return cls

@staticmethod
def bMethod():

return 2

We want to mock out the y method of the X class, with, for example, the following function:

def mock_y(self):
return 'mock y'

2.1.1 The context manager

For replacement of a single thing, it’s easiest to use the Replace context manager:

17

http://pypi.python.org/pypi/mock/

testfixtures Documentation, Release 4.13.0

from testfixtures import Replace

def test_function():
with Replace('testfixtures.tests.sample1.X.y', mock_y):

print(X().y())

For the duration of the with block, the replacement is used:

>>> test_function()
mock y

For multiple replacements to do, or where the you need access to the replacement within the code block under test, the
Replacer context manager can be used instead:

from mock import Mock
from testfixtures import Replacer

def test_function():
with Replacer() as replace:

mock_y = replace('testfixtures.tests.sample1.X.y', Mock())
mock_y.return_value = 'mock y'
print(X().y())

For the duration of the with block, the replacement is used:

>>> test_function()
mock y

2.1.2 The decorator

If you are working in a traditional unittest environment and want to replace different things in different test
functions, you may find the decorator suits your needs better:

from testfixtures import replace

@replace('testfixtures.tests.sample1.X.y', mock_y)
def test_function():

print(X().y())

When using the decorator, the replacement is used for the duration of the decorated callable’s execution:

>>> test_function()
mock y

If you need to manipulate or inspect the object that’s used as a replacement, you can add an extra parameter to your
function. The decorator will see this and pass the replacement in it’s place:

from mock import Mock, call
from testfixtures import compare,replace

@replace('testfixtures.tests.sample1.X.y', Mock())
def test_function(mock_y):

mock_y.return_value = 'mock y'
print(X().y())
compare(mock_y.mock_calls, expected=[call()])

The above still results in the same output:

18 Chapter 2. Mocking out objects and methods

http://docs.python.org/library/unittest.html#module-unittest

testfixtures Documentation, Release 4.13.0

>>> test_function()
mock y

2.1.3 Manual usage

If you want to replace something for the duration of a doctest or you want to replace something for every test in a
TestCase, then you can use the Replacer manually.

The instantiation and replacement are done in the setUp function of the TestCase or passed to the
DocTestSuite constructor:

>>> from testfixtures import Replacer
>>> replace = Replacer()
>>> replace('testfixtures.tests.sample1.X.y', mock_y)
<...>

The replacement then stays in place until removed:

>>> X().y()
'mock y'

Then, in the tearDown function of the TestCase or passed to the DocTestSuite constructor, the replacement
is removed:

>>> replace.restore()
>>> X().y()
'original y'

The restore() method can also be added as an addCleanup() if that is easier or more compact in your test
suite.

2.2 Replacing more than one thing

Both the Replacer and the replace() decorator can be used to replace more than one thing at a time. For the
former, this is fairly obvious:

def test_function():
with Replacer() as replace:

y = replace('testfixtures.tests.sample1.X.y', Mock())
y.return_value = 'mock y'
aMethod = replace('testfixtures.tests.sample1.X.aMethod', Mock())
aMethod.return_value = 'mock method'
x = X()
print(x.y(), x.aMethod())

For the decorator, it’s less obvious but still pretty easy:

from testfixtures import replace

@replace('testfixtures.tests.sample1.X.y', Mock())
@replace('testfixtures.tests.sample1.X.aMethod', Mock())
def test_function(aMethod, y):

print(aMethod, y)
aMethod().return_value = 'mock method'
y().return_value = 'mock y'
x = X()

2.2. Replacing more than one thing 19

http://docs.python.org/library/unittest.html#unittest.TestCase
http://docs.python.org/library/unittest.html#unittest.TestCase
http://docs.python.org/library/unittest.html#unittest.TestCase
http://docs.python.org/library/unittest.html#unittest.TestCase.addCleanup

testfixtures Documentation, Release 4.13.0

print(aMethod, y)
print(x.y(), x.aMethod())

You’ll notice that you can still get access to the replacements, even though there are several of them.

2.3 Replacing things that may not be there

The following code shows a situation where hpymay or may not be present depending on whether the guppy package
is installed or not.

testfixtures.tests.sample2

try:
from guppy import hpy
guppy = True

except ImportError:
guppy = False

def dump(path):
if guppy:

hpy().heap().stat.dump(path)

To test the behaviour of the code that uses hpy in both of these cases, regardless of whether or not the guppy package
is actually installed, we need to be able to mock out both hpy and the guppy global. This is done by doing non-strict
replacement, as shown in the following TestCase:

from testfixtures.tests.sample2 import dump
from testfixtures import replace
from mock import Mock, call

class Tests(unittest.TestCase):

@replace('testfixtures.tests.sample2.guppy', True)
@replace('testfixtures.tests.sample2.hpy', Mock(), strict=False)
def test_method(self, hpy):

dump('somepath')

compare([
call(),
call().heap(),
call().heap().stat.dump('somepath')

], hpy.mock_calls)

@replace('testfixtures.tests.sample2.guppy', False)
@replace('testfixtures.tests.sample2.hpy', Mock(), strict=False)
def test_method_no_heapy(self,hpy):

dump('somepath')

compare(hpy.mock_calls,[])

20 Chapter 2. Mocking out objects and methods

http://docs.python.org/library/unittest.html#unittest.TestCase

testfixtures Documentation, Release 4.13.0

The replace() method and calling a Replacer also supports non-strict replacement using the same keyword
parameter.

2.4 Replacing items in dictionaries and lists

Replace, Replacer and the replace() decorator can be used to replace items in dictionaries and lists.

For example, suppose you have a data structure like the following:

testfixtures.tests.sample1

someDict = dict(
key='value',
complex_key=[1, 2, 3],
)

You can mock out the value associated with key and the second element in the complex_key list as follows:

from pprint import pprint
from testfixtures import Replacer
from testfixtures.tests.sample1 import someDict

def test_function():
with Replacer() as replace:

replace('testfixtures.tests.sample1.someDict.key', 'foo')
replace('testfixtures.tests.sample1.someDict.complex_key.1', 42)
pprint(someDict)

While the replacement is in effect, the new items are in place:

>>> test_function()
{'complex_key': [1, 42, 3], 'key': 'foo'}

When it is no longer in effect, the originals are returned:

>>> pprint(someDict)
{'complex_key': [1, 2, 3], 'key': 'value'}

2.5 Removing attributes and dictionary items

Replace, Replacer and the replace() decorator can be used to remove attributes from objects and remove
items from dictionaries.

For example, suppose you have a data structure like the following:

testfixtures.tests.sample1

someDict = dict(
key='value',
complex_key=[1, 2, 3],
)

2.4. Replacing items in dictionaries and lists 21

testfixtures Documentation, Release 4.13.0

If you want to remove the key for the duration of a test, you can do so as follows:

from testfixtures import Replacer, not_there
from testfixtures.tests.sample1 import someDict

def test_function():
with Replace('testfixtures.tests.sample1.someDict.key', not_there):

pprint(someDict)

While the replacement is in effect, key is gone:

>>> test_function()
{'complex_key': [1, 2, 3]}

When it is no longer in effect, key is returned:

>>> pprint(someDict)
{'complex_key': [1, 2, 3], 'key': 'value'}

If you want the whole someDict dictionary to be removed for the duration of a test, you would do so as follows:

from testfixtures import Replacer, not_there
from testfixtures.tests import sample1

def test_function():
with Replace('testfixtures.tests.sample1.someDict', not_there):

print(hasattr(sample1, 'someDict'))

While the replacement is in effect, key is gone:

>>> test_function()
False

When it is no longer in effect, key is returned:

>>> pprint(sample1.someDict)
{'complex_key': [1, 2, 3], 'key': 'value'}

2.6 Gotchas

• Make sure you replace the object where it’s used and not where it’s defined. For example, with the following
code from the testfixtures.tests.sample1 package:

from time import time

def str_time():
return str(time())

You might be tempted to mock things as follows:

>>> replace = Replacer()
>>> replace('time.time', Mock())
<...>

But this won’t work:

22 Chapter 2. Mocking out objects and methods

testfixtures Documentation, Release 4.13.0

>>> from testfixtures.tests.sample1 import str_time
>>> type(float(str_time()))
<... 'float'>

You need to replace time() where it’s used, not where it’s defined:

>>> replace('testfixtures.tests.sample1.time', Mock())
<...>
>>> str_time()
"<...Mock...>"

A corollary of this is that you need to replace all occurrences of an original to safely be able to test. This can be
tricky when an original is imported into many modules that may be used by a particular test.

• You can’t replace whole top level modules, and nor should you want to! The reason being that everything up to
the last dot in the replacement target specifies where the replacement will take place, and the part after the last
dot is used as the name of the thing to be replaced:

>>> Replacer().replace('sys', Mock())
Traceback (most recent call last):
...
ValueError: target must contain at least one dot!

2.6. Gotchas 23

http://docs.python.org/library/time.html#time.time

testfixtures Documentation, Release 4.13.0

24 Chapter 2. Mocking out objects and methods

CHAPTER 3

Mocking dates and times

Testing code that involves dates and times or which has behaviour dependent on the date or time it is executed at has
historically been tricky. Mocking lets you perform tests on this type of code and TestFixtures provides three specialised
mock objects to help with this.

3.1 Dates

TestFixtures provides the test_date() function that returns a subclass of datetime.date with a today()
method that will return a consistent sequence of dates each time it is called.

This enables you to write tests for code such as the following, from the testfixtures.tests.sample1 pack-
age:

from datetime import datetime, date

def str_today_1():
return str(date.today())

Replace can be used to apply the mock as shown in the following example, which could appear in either a unit test
or a doc test:

>>> from testfixtures import Replace, test_date
>>> from testfixtures.tests.sample1 import str_today_1
>>> with Replace('testfixtures.tests.sample1.date', test_date()):
... str_today_1()
... str_today_1()
'2001-01-01'
'2001-01-02'

If you need a specific date to be returned, you can specify it:

>>> with Replace('testfixtures.tests.sample1.date', test_date(1978,6,13)):
... str_today_1()
'1978-06-13'

If you need to test with a whole sequence of specific dates, this can be done as follows:

>>> with Replace('testfixtures.tests.sample1.date', test_date(None)) as d:
... d.add(1978,6,13)
... d.add(2009,11,12)
... str_today_1()
... str_today_1()

25

http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.date.today

testfixtures Documentation, Release 4.13.0

'1978-06-13'
'2009-11-12'

Another way to test with a specific sequence of dates is to use the delta_type and delta parameters to
test_date(). These parameters control the type and size, respectively, of the difference between each date re-
turned.

For example, where 2 days elapse between each returned value:

>>> with Replace('testfixtures.tests.sample1.date',
... test_date(1978, 6, 13, delta=2, delta_type='days')) as d:
... str_today_1()
... str_today_1()
... str_today_1()
'1978-06-13'
'1978-06-15'
'1978-06-17'

The delta_type can be any keyword parameter accepted by the timedelta constructor. Specifying a delta of
zero can be an effective way of ensuring that all calls to the today() method return the same value:

>>> with Replace('testfixtures.tests.sample1.date',
... test_date(1978, 6, 13, delta=0)) as d:
... str_today_1()
... str_today_1()
... str_today_1()
'1978-06-13'
'1978-06-13'
'1978-06-13'

When using test_date(), you can, at any time, set the next date to be returned using the set() method. The date
returned after this will be the set date plus the delta in effect:

>>> with Replace('testfixtures.tests.sample1.date', test_date(delta=2)) as d:
... str_today_1()
... d.set(1978,8,1)
... str_today_1()
... str_today_1()
'2001-01-01'
'1978-08-01'
'1978-08-03'

3.2 Datetimes

TextFixtures provides the test_datetime() function that returns a subclass of datetime.datetime with a
now() method that will return a consistent sequence of datetime objects each time it is called.

This enables you to write tests for code such as the following, from the testfixtures.tests.sample1 pack-
age:

from datetime import datetime, date

def str_now_1():
return str(datetime.now())

We use the a Replacer as follows, which could appear in either a unit test or a doc test:

26 Chapter 3. Mocking dates and times

http://docs.python.org/library/datetime.html#datetime.timedelta
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime.now
http://docs.python.org/library/datetime.html#datetime.datetime

testfixtures Documentation, Release 4.13.0

>>> from testfixtures import Replacer, test_datetime
>>> from testfixtures.tests.sample1 import str_now_1
>>> with Replace('testfixtures.tests.sample1.datetime', test_datetime()):
... str_now_1()
... str_now_1()
'2001-01-01 00:00:00'
'2001-01-01 00:00:10'

If you need a specific datetime to be returned, you can specify it:

>>> with Replace('testfixtures.tests.sample1.datetime',
... test_datetime(1978,6,13,1,2,3)):
... str_now_1()
'1978-06-13 01:02:03'

If you need to test with a whole sequence of specific datetimes, this can be done as follows:

>>> with Replace('testfixtures.tests.sample1.datetime',
... test_datetime(None)) as d:
... d.add(1978,6,13,16,0,1)
... d.add(2009,11,12,11,41,20)
... str_now_1()
... str_now_1()
'1978-06-13 16:00:01'
'2009-11-12 11:41:20'

Another way to test with a specific sequence of datetimes is to use the delta_type and delta parameters to
test_datetime(). These parameters control the type and size, respectively, of the difference between each date-
time returned.

For example, where 2 hours elapse between each returned value:

>>> with Replace(
... 'testfixtures.tests.sample1.datetime',
... test_datetime(1978, 6, 13, 16, 0, 1, delta=2, delta_type='hours')
...) as d:
... str_now_1()
... str_now_1()
... str_now_1()
'1978-06-13 16:00:01'
'1978-06-13 18:00:01'
'1978-06-13 20:00:01'

The delta_type can be any keyword parameter accepted by the timedelta constructor. Specifying a delta of
zero can be an effective way of ensuring that all calls to the now() method return the same value:

>>> with Replace('testfixtures.tests.sample1.datetime',
... test_datetime(1978, 6, 13, 16, 0, 1, delta=0)) as d:
... str_now_1()
... str_now_1()
... str_now_1()
'1978-06-13 16:00:01'
'1978-06-13 16:00:01'
'1978-06-13 16:00:01'

When using test_datetime(), you can, at any time, set the next datetime to be returned using the set()method.
The value returned after this will be the set value plus the delta in effect:

>>> with Replace('testfixtures.tests.sample1.datetime',
... test_datetime(delta=2)) as d:

3.2. Datetimes 27

http://docs.python.org/library/datetime.html#datetime.timedelta

testfixtures Documentation, Release 4.13.0

... str_now_1()

... d.set(1978,8,1)

... str_now_1()

... str_now_1()
'2001-01-01 00:00:00'
'1978-08-01 00:00:00'
'1978-08-01 00:00:02'

3.2.1 Timezones

In many situations where you’re mocking out now() or utcnow() you’re not concerned about timezones, especially
given that both methods will usually return datetime objects that have a tzinfo of None. However, in some appli-
cations it is important that now() and utcnow() return different times, as they would normally if the application is
run anywhere other than the UTC timezone.

The best way to understand how to use test_datetime() in these situations is to think of the internal queue as
being a queue of datetime objects at the current local time with a tzinfo of None, much as would be returned by
now(). If you pass in a tz parameter to now() it will be applied to the value before it is returned in the same way as
it would by datetime.datetime.now().

If you pass in a tzinfo to test_datetime(), this will be taken to indicate the timezone you intend for the local
times that now() simulates. As such, that timezone will be used to compute values returned from utcnow() such
that they would be test_datetime objects in the UTC timezone with the tzinfo set to None, as would be the case
for a normal call to datetime.datetime.utcnow().

For example, lets take a timezone as defined by the following class:

from datetime import tzinfo, timedelta

class ATZInfo(tzinfo):

def tzname(self, dt):
return 'A TimeZone'

def utcoffset(self, dt):
In general, this timezone is 5 hours behind UTC
offset = timedelta(hours=-5)
return offset+self.dst(dt)

def dst(self, dt):
However, between March and September, it is only
4 hours behind UTC
if 3 < dt.month < 9:

return timedelta(hours=1)
return timedelta()

If we create a test_datetime with this timezone and a delta of zero, so we can see affect of the timezone over
multiple calls, the values returned by now() will be affected:

>>> datetime = test_datetime(2001, 1, 1, delta=0, tzinfo=ATZInfo())

A normal call to now() will return the values passed to the constructor:

>>> print(datetime.now())
2001-01-01 00:00:00

If we now ask for this time but in the timezone we passed to test_datetime, we will get the same hours, minutes
and seconds but with a tzinfo attribute set:

28 Chapter 3. Mocking dates and times

http://docs.python.org/library/datetime.html#datetime.datetime.now
http://docs.python.org/library/datetime.html#datetime.datetime.utcnow
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime.now
http://docs.python.org/library/datetime.html#datetime.datetime.utcnow
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime.now
http://docs.python.org/library/datetime.html#datetime.datetime.now
http://docs.python.org/library/datetime.html#datetime.datetime.utcnow

testfixtures Documentation, Release 4.13.0

>>> print(datetime.now(ATZInfo()))
2001-01-01 00:00:00-05:00

If we call utcnow(), we will get the time equivalent to the values passed to the constructor, but in the UTC timezone:

>>> print(datetime.utcnow())
2001-01-01 05:00:00

The timezone passed in when the test_datetime is created has a similar effect on any items set:

>>> datetime.set(2011,5,1,10)
>>> print(datetime.now())
2011-05-01 10:00:00
>>> print(datetime.utcnow())
2011-05-01 14:00:00

Likewise, add() behaves the same way:

>>> datetime = test_datetime(None, delta=0, tzinfo=ATZInfo())
>>> datetime.add(2011,1,1,10)
>>> datetime.add(2011,5,1,10)
>>> datetime.add(2011,10,1,10)
>>> print(datetime.now())
2011-01-01 10:00:00
>>> print(datetime.utcnow())
2011-05-01 14:00:00
>>> print(datetime.now())
2011-10-01 10:00:00

3.3 Times

TextFixtures provides the test_time() function that, when called, returns a replacement for the time.time()
function.

This enables you to write tests for code such as the following, from the testfixtures.tests.sample1 pack-
age:

from time import time

def str_time():
return str(time())

We use the a Replacer as follows, which could appear in either a unit test or a doc test:

>>> from testfixtures import Replacer, test_time
>>> from testfixtures.tests.sample1 import str_time
>>> with Replace('testfixtures.tests.sample1.time', test_time()):
... str_time()
... str_time()
'978307200.0'
'978307201.0'

If you need an integer representing a specific time to be returned, you can specify it:

>>> with Replace('testfixtures.tests.sample1.time',
... test_time(1978, 6, 13, 1, 2, 3)):

3.3. Times 29

http://docs.python.org/library/time.html#time.time

testfixtures Documentation, Release 4.13.0

... str_time()
'266547723.0'

If you need to test with a whole sequence of specific timestamps, this can be done as follows:

>>> with Replace('testfixtures.tests.sample1.time', test_time(None)) as t:
... t.add(1978,6,13,16,0,1)
... t.add(2009,11,12,11,41,20)
... str_time()
... str_time()
'266601601.0'
'1258026080.0'

Another way to test with a specific sequence of timestamps is to use the delta_type and delta parameters to
test_time(). These parameters control the type and size, respectively, of the difference between each timestamp
returned.

For example, where 2 hours elapse between each returned value:

>>> with Replace(
... 'testfixtures.tests.sample1.time',
... test_time(1978, 6, 13, 16, 0, 1, delta=2, delta_type='hours')
...) as d:
... str_time()
... str_time()
... str_time()
'266601601.0'
'266608801.0'
'266616001.0'

The delta_type can be any keyword parameter accepted by the timedelta constructor. Specifying a delta of
zero can be an effective way of ensuring that all calls to the time() function return the same value:

>>> with Replace('testfixtures.tests.sample1.time',
... test_time(1978, 6, 13, 16, 0, 1, delta=0)) as d:
... str_time()
... str_time()
... str_time()
'266601601.0'
'266601601.0'
'266601601.0'

When using test_time(), you can, at any time, set the next timestamp to be returned using the set() method.
The value returned after this will be the set value plus the delta in effect:

>>> with Replace('testfixtures.tests.sample1.time', test_time(delta=2)) as d:
... str_time()
... d.set(1978,8,1)
... str_time()
... str_time()
'978307200.0'
'270777600.0'
'270777602.0'

3.4 Gotchas with dates and times

Using these specialised mock objects can have some intricacies as described below:

30 Chapter 3. Mocking dates and times

http://docs.python.org/library/datetime.html#datetime.timedelta

testfixtures Documentation, Release 4.13.0

3.4.1 Local references to functions

There are situations where people may have obtained a local reference to the today() or now() methods, such as
the following code from the testfixtures.tests.sample1 package:

from datetime import datetime, date

now = datetime.now

def str_now_2():
return str(now())

today = date.today

def str_today_2():
return str(today())

In these cases, you need to be careful with the replacement:

>>> from testfixtures import Replacer, test_datetime
>>> from testfixtures.tests.sample1 import str_now_2, str_today_2
>>> with Replacer() as replace:
... today = replace('testfixtures.tests.sample1.today', test_date().today)
... now = replace('testfixtures.tests.sample1.now', test_datetime().now)
... str_today_2()
... str_now_2()
'2001-01-01'
'2001-01-01 00:00:00'

3.4.2 Use with code that checks class types

When using the above specialist mocks, you may find code that checks the type of parameters passed may get confused.
This is because, by default, test_datetime and test_date return instances of the real datetime and date
classes:

>>> from testfixtures import test_datetime
>>> from datetime import datetime
>>> tdatetime = test_datetime()
>>> issubclass(tdatetime, datetime)
True
>>> tdatetime.now().__class__
<...'datetime.datetime'>

The above behaviour, however, is generally what you want as other code in your application and, more importantly, in
other code such as database adapters, may handle instances of the real datetime and date classes, but not instances
of the test_datetime and test_date mocks.

That said, this behaviour can cause problems if you check the type of an instance against one of the mock classes.
Most people might expect the following to return True:

>>> isinstance(tdatetime(2011, 1, 1), tdatetime)
False
>>> isinstance(tdatetime.now(), tdatetime)
False

3.4. Gotchas with dates and times 31

http://docs.python.org/library/datetime.html#datetime.date.today
http://docs.python.org/library/datetime.html#datetime.datetime.now
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.date

testfixtures Documentation, Release 4.13.0

If this causes a problem for you, then both datetime and date take a strict keyword parameter that can be used as
follows:

>>> tdatetime = test_datetime(strict=True)
>>> tdatetime.now().__class__
<class 'testfixtures.tdatetime.tdatetime'>
>>> isinstance(tdatetime.now(), tdatetime)
True

You will need to take care that you have replaced occurrences of the class where type checking is done with the correct
test_datetime or test_date. Also, be aware that the date() method of test_datetime instances will
still return a normal date instance. If type checking related to this is causing problems, the type the date() method
returns can be controlled as shown in the following example:

from testfixtures import test_date, test_datetime

date_type = test_date(strict=True)
datetime_type = test_datetime(strict=True, date_type=date_type)

With things set up like this, the date() method will return an instance of the date_type mock:

>>> somewhen = datetime_type.now()
>>> somewhen.date()
tdate(2001, 1, 1)
>>> _.__class__ is date_type
True

32 Chapter 3. Mocking dates and times

http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.date

CHAPTER 4

Testing logging

Python includes an excellent logging package, however many people assume that logging calls do not need to be
tested. They may also want to test logging calls but find the prospect too daunting. To help with this, TestFixtures
allows you to easily capture the output of calls to Python’s logging framework and make sure they were as expected.

Note: The LogCapture class is useful for checking that your code logs the right messages. If you want to check
that the configuration of your handlers is correct, please see the section below.

4.1 Methods of capture

There are three different techniques for capturing messages logged to the Python logging framework, depending on
the type of test you are writing. They are all described in the sections below.

4.1.1 The context manager

If you’re using a version of Python where the with keyword is available, the context manager provided by TestFixtures
can be used:

>>> import logging
>>> from testfixtures import LogCapture
>>> with LogCapture() as l:
... logger = logging.getLogger()
... logger.info('a message')
... logger.error('an error')

For the duration of the with block, log messages are captured. The context manager provides a check method that
raises an exception if the logging wasn’t as you expected:

>>> l.check(
... ('root', 'INFO', 'a message'),
... ('root', 'ERROR', 'another error'),
...)
Traceback (most recent call last):
...

AssertionError: sequence not as expected:

same:
(('root', 'INFO', 'a message'),)

33

http://docs.python.org/library/logging.html#module-logging

testfixtures Documentation, Release 4.13.0

expected:
(('root', 'ERROR', 'another error'),)

actual:
(('root', 'ERROR', 'an error'),)

It also has a string representation that allows you to see what has been logged, which is useful for doc tests:

>>> print(l)
root INFO

a message
root ERROR

an error

4.1.2 The decorator

If you are working in a traditional unittest environment and only want to capture logging for a particular test
function, you may find the decorator suits your needs better:

from testfixtures import log_capture

@log_capture()
def test_function(l):

logger = logging.getLogger()
logger.info('a message')
logger.error('an error')

l.check(
('root', 'INFO', 'a message'),
('root', 'ERROR', 'an error'),
)

4.1.3 Manual usage

If you want to capture logging for the duration of a doctest or in every test in a TestCase, then you can use the
LogCapture manually.

The instantiation and replacement are done in the setUp function of the TestCase or passed to the
DocTestSuite constructor:

>>> from testfixtures import LogCapture
>>> l = LogCapture()

You can then execute whatever will log the messages you want to test for:

>>> from logging import getLogger
>>> getLogger().info('a message')

At any point, you can check what has been logged using the check method:

>>> l.check(('root', 'INFO', 'a message'))

Alternatively, you can use the string representation of the LogCapture:

>>> print(l)
root INFO

a message

34 Chapter 4. Testing logging

http://docs.python.org/library/unittest.html#module-unittest
http://docs.python.org/library/unittest.html#unittest.TestCase
http://docs.python.org/library/unittest.html#unittest.TestCase

testfixtures Documentation, Release 4.13.0

Then, in the tearDown function of the TestCase or passed to the DocTestSuite constructor, you should make
sure you stop the capturing:

>>> l.uninstall()

If you have multiple LogCapture objects in use, you can easily uninstall them all:

>>> LogCapture.uninstall_all()

4.2 Checking captured log messages

Regardless of how you use the LogCapture to capture messages, there are three ways of checking that the messages
captured were as expected.

The following example is useful for showing these:

from testfixtures import LogCapture
from logging import getLogger
logger = getLogger()

with LogCapture() as l:
logger.info('start of block number %i', 1)
try:

raise RuntimeError('No code to run!')
except:

logger.error('error occurred', exc_info=True)

4.2.1 The check method

The LogCapture has a check() method that will compare the log messages captured with those you expect.
Expected messages are expressed as three-element tuples where the first element is the name of the logger to which
the message should have been logged, the second element is the string representation of the level at which the message
should have been logged and the third element is the message that should have been logged after any parameter
interpolation has taken place.

If things are as you expected, the method will not raise any exceptions:

>>> result = l.check(
... ('root', 'INFO', 'start of block number 1'),
... ('root', 'ERROR', 'error occurred'),
...)

However, if the actual messages logged were different, you’ll get an AssertionError explaining what happened:

>>> l.check(('root', 'INFO', 'start of block number 1'))
Traceback (most recent call last):
...

AssertionError: sequence not as expected:

same:
(('root', 'INFO', 'start of block number 1'),)

expected:
()

4.2. Checking captured log messages 35

http://docs.python.org/library/unittest.html#unittest.TestCase
http://docs.python.org/library/exceptions.html#exceptions.AssertionError

testfixtures Documentation, Release 4.13.0

actual:
(('root', 'ERROR', 'error occurred'),)

4.2.2 Printing

The LogCapture has a string representation that shows what messages it has captured. This can be useful in doc
tests:

>>> print(l)
root INFO

start of block number 1
root ERROR

error occurred

This representation can also be used to check that no logging has occurred:

>>> empty = LogCapture()
>>> print(empty)
No logging captured

4.2.3 Inspecting

The LogCapture also keeps a list of the LogRecord instances it captures. This is useful when you want to check
specifics of the captured logging that aren’t available from either the string representation or the check() method.

A common case of this is where you want to check that exception information was logged for certain messages:

>>> print(l.records[-1].exc_info)
(<... '...RuntimeError'>, RuntimeError('No code to run!',), <traceback object at ...>)

If you’re working in a unit test, the following code may be more appropriate:

from testfixtures import compare, Comparison as C

compare(C(RuntimeError('No code to run!')), l.records[-1].exc_info[1])

4.3 Only capturing specific logging

Some actions that you want to test may generate a lot of logging, only some of which you actually need to care about.

The logging you care about is often only that above a certain log level. If this is the case, you can configure
LogCapture to only capture logging at or above a specific level.

If using the context manager, you would do this:

>>> with LogCapture(level=logging.INFO) as l:
... logger = getLogger()
... logger.debug('junk')
... logger.info('something we care about')
... logger.error('an error')
>>> print(l)
root INFO

something we care about
root ERROR

an error

36 Chapter 4. Testing logging

http://docs.python.org/library/logging.html#logging.LogRecord

testfixtures Documentation, Release 4.13.0

If using the decorator, you would do this:

@log_capture(level=logging.INFO)
def test_function(l):

logger= getLogger()
logger.debug('junk')
logger.info('what we care about')

l.check(('root', 'INFO', 'what we care about'))

In other cases this problem can be alleviated by only capturing a specific logger.

If using the context manager, you would do this:

>>> with LogCapture('specific') as l:
... getLogger('something').info('junk')
... getLogger('specific').info('what we care about')
... getLogger().info('more junk')
>>> print(l)
specific INFO

what we care about

If using the decorator, you would do this:

@log_capture('specific')
def test_function(l):

getLogger('something').info('junk')
getLogger('specific').info('what we care about')
getLogger().info('more junk')

l.check(('specific', 'INFO', 'what we care about'))

However, it may be that while you don’t want to capture all logging, you do want to capture logging from multiple
specific loggers.

You would do this with the context manager as follows:

>>> with LogCapture(('one','two')) as l:
... getLogger('three').info('3')
... getLogger('two').info('2')
... getLogger('one').info('1')
>>> print(l)
two INFO

2
one INFO

1

Likewise, the same thing can be done with the decorator:

@log_capture('one','two')
def test_function(l):

getLogger('three').info('3')
getLogger('two').info('2')
getLogger('one').info('1')

l.check(
('two', 'INFO', '2'),
('one', 'INFO', '1')
)

It may also be that the simplest thing to do is only capture logging for part of your test. This is particularly common

4.3. Only capturing specific logging 37

testfixtures Documentation, Release 4.13.0

with long doc tests. To make this easier, LogCapture supports manual installation and uninstallation as shown in
the following example:

>>> l = LogCapture(install=False)
>>> getLogger().info('junk')
>>> l.install()
>>> getLogger().info('something we care about')
>>> l.uninstall()
>>> getLogger().info('more junk')
>>> l.install()
>>> getLogger().info('something else we care about')
>>> print(l)
root INFO

something we care about
root INFO

something else we care about

4.4 Checking the configuration of your log handlers

LogCapture is good for checking that your code is logging the correct messages; just as important is checking that
your application has correctly configured log handers. This can be done using a unit test such as the following:

from testfixtures import Comparison as C, compare
from unittest import TestCase
import logging
import sys

class LoggingConfigurationTests(TestCase):

We mock out the handlers list for the logger we're
configuring in such a way that we have no handlers
configured at the start of the test and the handlers our
configuration installs are removed at the end of the test.

def setUp(self):
self.logger = logging.getLogger()
self.orig_handlers = self.logger.handlers
self.logger.handlers = []
self.level = self.logger.level

def tearDown(self):
self.logger.handlers = self.orig_handlers
self.logger.level = self.level

def test_basic_configuration(self):
Our logging configuration code, in this case just a
call to basicConfig:
logging.basicConfig(format='%(levelname)s %(message)s',

level=logging.INFO)

Now we check the configuration is as expected:

compare(self.logger.level, 20)
compare([

C('logging.StreamHandler',
stream=sys.stderr,

38 Chapter 4. Testing logging

testfixtures Documentation, Release 4.13.0

formatter=C('logging.Formatter',
_fmt='%(levelname)s %(message)s',
strict=False),

level=logging.NOTSET,
strict=False)

], self.logger.handlers)

4.4. Checking the configuration of your log handlers 39

testfixtures Documentation, Release 4.13.0

40 Chapter 4. Testing logging

CHAPTER 5

Testing output to streams

In many situations, it’s perfectly legitimate for output to be printed to one of the standard streams. To aid with testing
this kind of output, TestFixtures provides the OutputCapture helper.

This helper is a context manager that captures output sent to sys.stdout and sys.stderr and provides a
compare() method to check that the output was as expected.

Here’s a simple example:

from testfixtures import OutputCapture
import sys

with OutputCapture() as output:
code under test
print("Hello!")
print("Something bad happened!", file=sys.stderr)

output.compare('\n'.join([
"Hello!",
"Something bad happened!",
]))

To make life easier, both the actual and expected output are stripped of leading and trailing whitespace before the
comparison is done:

>>> with OutputCapture() as o:
... print(' Bar! ')
... o.compare(' Foo! ')
Traceback (most recent call last):
...
AssertionError: 'Foo!' (expected) != 'Bar!' (actual)

However, if you need to make very explicit assertions about what has been written to the stream then you can do so
using the captured property of the OutputCapture:

>>> with OutputCapture() as o:
... print(' Bar! ')
>>> print(repr(o.captured))
' Bar! \n'

If you need to explicitly check whether output went to stdout or stderr, separate mode can be used:

from testfixtures import OutputCapture
import sys

41

testfixtures Documentation, Release 4.13.0

with OutputCapture(separate=True) as output:
print("Hello!")
print("Something bad happened!", file=sys.stderr)

output.compare(
stdout="Hello!",
stderr="Something bad happened!",
)

Finally, you may sometimes want to disable an OutputCapture without removing it from your code. This often
happens when you want to insert a debugger call while an OutputCapture is active; if it remains enabled, all
debugger output will be captured making the debugger very difficult to use!

To deal with this problem, the OutputCapture may be disabled and then re-enabled as follows:

>>> with OutputCapture() as o:
... print('Foo')
... o.disable()
... print('Bar')
... o.enable()
... print('Baz')
Bar
>>> print(o.captured)
Foo
Baz

Note: Some debuggers, notably pdb, do interesting things with streams such that calling disable() from within
the debugger will have no effect. A good fallback is to type the following, which will almost always restore output to
where you want it:

import sys; sys.stdout=sys.__stdout__

42 Chapter 5. Testing output to streams

http://docs.python.org/library/pdb.html#module-pdb

CHAPTER 6

Testing with files and directories

Working with files and directories in tests can often require excessive amounts of boilerplate code to make sure that the
tests happen in their own sandbox, files and directories contain what they should or code processes test files correctly,
and the sandbox is cleared up at the end of the tests.

6.1 Methods of use

To help with this, TestFixtures provides the TempDirectory class that hides most of the boilerplate code you would
need to write.

Suppose you wanted to test the following function:

import os

def foo2bar(dirpath, filename):
path = os.path.join(dirpath, filename)
with open(path, 'rb') as input:

data = input.read()
data = data.replace(b'foo', b'bar')
with open(path, 'wb') as output:

output.write(data)

There are several different ways depending on the type of test you are writing:

6.1.1 The context manager

If you’re using a version of Python where the with keyword is available, a TempDirectory can be used as a
context manager:

>>> from testfixtures import TempDirectory
>>> with TempDirectory() as d:
... d.write('test.txt', b'some foo thing')
... foo2bar(d.path, 'test.txt')
... d.read('test.txt')
'...'
b'some bar thing'

43

testfixtures Documentation, Release 4.13.0

6.1.2 The decorator

If you are working in a traditional unittest environment and only work with files or directories in a particular test
function, you may find the decorator suits your needs better:

from testfixtures import tempdir, compare

@tempdir()
def test_function(d):

d.write('test.txt', b'some foo thing')
foo2bar(d.path, 'test.txt')
compare(d.read('test.txt'), b'some bar thing')

6.1.3 Manual usage

If you want to work with files or directories for the duration of a doctest or in every test in a TestCase, then you can
use the TempDirectory manually.

The instantiation and replacement are done in the setUp function of the TestCase or passed to the
DocTestSuite constructor:

>>> from testfixtures import TempDirectory
>>> d = TempDirectory()

You can then use the temporary directory for your testing:

>>> d.write('test.txt', b'some foo thing')
'...'
>>> foo2bar(d.path, 'test.txt')
>>> d.read('test.txt') == b'some bar thing'
True

Then, in the tearDown function of the TestCase or passed to the DocTestSuite constructor, you should make
sure the temporary directory is cleaned up:

>>> d.cleanup()

If you have multiple TempDirectory objects in use, you can easily clean them all up:

>>> TempDirectory.cleanup_all()

6.2 Features of a temporary directory

No matter which usage pattern you pick, you will always end up with a TempDirectory object. These have an
array of methods that let you perform common file and directory related tasks without all the manual boiler plate. The
following sections show you how to perform the various tasks you’re likely to bump into in the course of testing.

6.2.1 Computing paths

If you need to know the real path of the temporary directory, the TempDirectory object has a path attribute:

>>> tempdir.path
'...tmp...'

44 Chapter 6. Testing with files and directories

http://docs.python.org/library/unittest.html#module-unittest
http://docs.python.org/library/unittest.html#unittest.TestCase
http://docs.python.org/library/unittest.html#unittest.TestCase
http://docs.python.org/library/unittest.html#unittest.TestCase

testfixtures Documentation, Release 4.13.0

A common use case is to want to compute a path within the temporary directory to pass to code under test. This can
be done with the getpath() method:

>>> tempdir.getpath('foo').rsplit(os.sep,1)[-1]
'foo'

If you want to compute a deeper path, you can either pass either a tuple or a forward slash-separated path:

>>> tempdir.getpath(('foo', 'baz')).rsplit(os.sep, 2)[-2:]
['foo', 'baz']
>>> tempdir.getpath('foo/baz') .rsplit(os.sep, 2)[-2:]
['foo', 'baz']

Note: If passing a string containing path separators, a forward slash should be used as the separator regardless of the
underlying platform separator.

6.2.2 Writing files

To write to a file in the root of the temporary directory, you pass the name of the file and the content you want to write:

>>> tempdir.write('myfile.txt', b'some text')
'...'
>>> with open(os.path.join(tempdir.path, 'myfile.txt')) as f:
... print(f.read())
some text

The full path of the newly written file is returned:

>>> path = tempdir.write('anotherfile.txt', b'some more text')
>>> with open(path) as f:
... print(f.read())
some more text

You can also write files into a sub-directory of the temporary directory, whether or not that directory exists, as follows:

>>> path = tempdir.write(('some', 'folder', 'afile.txt'), b'the text')
>>> with open(path) as f:
... print(f.read())
the text

You can also specify the path to write to as a forward-slash separated string:

>>> path = tempdir.write('some/folder/bfile.txt', b'the text')
>>> with open(path) as f:
... print(f.read())
the text

Note: Forward slashes should be used regardless of the file system or operating system in use.

6.2.3 Creating directories

If you just want to create a sub-directory in the temporary directory you can do so as follows:

6.2. Features of a temporary directory 45

testfixtures Documentation, Release 4.13.0

>>> tempdir.makedir('output')
'...'
>>> os.path.isdir(os.path.join(tempdir.path, 'output'))
True

As with file creation, the full path of the sub-directory that has just been created is returned:

>>> path = tempdir.makedir('more_output')
>>> os.path.isdir(path)
True

Finally, you can create a nested sub-directory even if the intervening parent directories do not exist:

>>> os.path.exists(os.path.join(tempdir.path, 'some'))
False
>>> path = tempdir.makedir(('some', 'sub', 'dir'))
>>> os.path.exists(path)
True

You can also specify the path to write to as a forward-slash separated string:

>>> os.path.exists(os.path.join(tempdir.path, 'another'))
False
>>> path = tempdir.makedir('another/sub/dir')
>>> os.path.exists(path)
True

Note: Forward slashes should be used regardless of the file system or operating system in use.

6.2.4 Checking the contents of files

Once a file has been written into the temporary directory, you will often want to check its contents. This is done with
the TempDirectory.read() method.

Suppose the code you are testing creates some files:

def spew(path):
with open(os.path.join(path, 'root.txt'), 'wb') as f:

f.write(b'root output')
os.mkdir(os.path.join(path, 'subdir'))
with open(os.path.join(path, 'subdir', 'file.txt'), 'wb') as f:

f.write(b'subdir output')
os.mkdir(os.path.join(path, 'subdir', 'logs'))

We can test this function by passing it the temporary directory’s path and then using the TempDirectory.read()
method to check the files were created with the correct content:

>>> spew(tempdir.path)
>>> tempdir.read('root.txt')
b'root output'
>>> tempdir.read(('subdir', 'file.txt'))
b'subdir output'

The second part of the above test shows how to use the TempDirectory.read() method to check the contents of
files that are in sub-directories of the temporary directory. This can also be done by specifying the path relative to the
root of the temporary directory as a forward-slash separated string:

46 Chapter 6. Testing with files and directories

testfixtures Documentation, Release 4.13.0

>>> tempdir.read('subdir/file.txt')
b'subdir output'

Note: Forward slashes should be used regardless of the file system or operating system in use.

6.2.5 Checking the contents of directories

It’s good practice to test that your code is only writing files you expect it to and to check they are being written to the
path you expect. TempDirectory.compare() is the method to use to do this.

As an example, we could check that the spew() function above created no extraneous files as follows:

>>> tempdir.compare([
... 'root.txt',
... 'subdir/',
... 'subdir/file.txt',
... 'subdir/logs/',
...])

If we only wanted to check the sub-directory, we would specify the path to start from, relative to the root of the
temporary directory:

>>> tempdir.compare([
... 'file.txt',
... 'logs/',
...], path='subdir')

If, like git, we only cared about files, we could do the comparison as follows:

>>> tempdir.compare([
... 'root.txt',
... 'subdir/file.txt',
...], files_only=True)

And finally, if we only cared about files at a particular level, we could turn off the recursive comparison as follows:

>>> tempdir.compare([
... 'root.txt',
... 'subdir',
...], recursive=False)

The compare() method can also be used to check whether a directory contains nothing, for example:

>>> tempdir.compare(path=('subdir', 'logs'), expected=())

The above can also be done by specifying the sub-directory to be checked as a forward-slash separated path:

>>> tempdir.compare(path='subdir/logs', expected=())

If the actual directory contents do not match the expected contents passed in, an AssertionError is raised, which
will show up as a unit test failure:

>>> tempdir.compare(['subdir'], recursive=False)
Traceback (most recent call last):
...
AssertionError: sequence not as expected:

6.2. Features of a temporary directory 47

http://docs.python.org/library/exceptions.html#exceptions.AssertionError

testfixtures Documentation, Release 4.13.0

same:
()

expected:
('subdir',)

actual:
('root.txt', 'subdir')

In some circumstances, you may want to ignore certain files or sub-directories when checking contents. To make
this easy, the TempDirectory constructor takes an optional ignore parameter which, if provided, should contain
a sequence of regular expressions. If any of the regular expressions return a match when used to search through the
results of any of the the methods covered in this section, that result will be ignored.

For example, suppose we are testing some revision control code, but don’t really care about the revision control
system’s metadata directories, which may or may not be present:

from random import choice

def svn_ish(dirpath, filename):
if choice((True, False)):
os.mkdir(os.path.join(dirpath, '.svn'))

with open(os.path.join(dirpath, filename), 'wb') as f:
f.write(b'something')

To test this, we can use any of the previously described methods.

When used manually or as a context manager, this would be as follows:

>>> with TempDirectory(ignore=['.svn']) as d:
... svn_ish(d.path, 'test.txt')
... d.compare(['test.txt'])

The decorator would be as follows:

from testfixtures import tempdir, compare

@tempdir(ignore=['.svn'])
def test_function(d):

svn_ish(d.path, 'test.txt')
d.compare(['test.txt'])

If you are working with doctests, the listdir() method can be used instead:

>>> tempdir.listdir()
root.txt
subdir
>>> tempdir.listdir('subdir')
file.txt
logs
>>> tempdir.listdir(('subdir', 'logs'))
No files or directories found.

The above example also shows how to check the contents of sub-directories of the temporary directory and also shows
what is printed when a directory contains nothing. The listdir() method can also take a path separated by forward
slashes, which can make doctests a little more readable. The above test could be written as follows:

>>> tempdir.listdir('subdir/logs')
No files or directories found.

48 Chapter 6. Testing with files and directories

testfixtures Documentation, Release 4.13.0

However, if you have a nested folder structure, such as that created by our spew() function, it can be easier to just
inspect the whole tree of files and folders created. You can do this by using the recursive parameter to listdir():

>>> tempdir.listdir(recursive=True)
root.txt
subdir/
subdir/file.txt
subdir/logs/

6.2.6 Bytes versus Strings

You’ll notice that all of the examples so far have used raw bytes as their data and written to and read from files only
in binary mode. This keeps all the examples nice and simple and working consistently between Python 2 and Python
3. One of the big changes between Python 2 and Python 3 was that the default string type became unicode instead of
binary, and a new type for bytes was introduced. This little snippet shows the difference by defining two constants for
the British Pound symbol:

import sys
PY3 = sys.version_info[:2] >= (3, 0)

if PY3:
some_bytes = '\xa3'.encode('utf-8')
some_text = '\xa3'

else:
some_bytes = '\xc2\xa3'
some_text = '\xc2\xa3'.decode('utf-8')

Python 3 is much stricter than Python 2 about the byte versus string boundary and TempDirectory has been
changed to help work with this by only reading and writing files in binary mode and providing parameters to control
decoding and encoding when you want to read and write text.

For example, when writing, you can either write bytes directly, as we have been in the examples so far:

>>> path = tempdir.write('currencies.txt', some_bytes)
>>> with open(path, 'rb') as currencies:
... currencies.read()
b'\xc2\xa3'

Or, you can write text, but must specify an encoding to use when writing the data to the file:

>>> path = tempdir.write('currencies.txt', some_text, 'utf-8')
>>> with open(path, 'rb') as currencies:
... currencies.read()
b'\xc2\xa3'

The same is true when reading files. You can either read bytes:

>>> tempdir.read('currencies.txt') == some_bytes
True

Or, you can read text, but must specify an encoding that will be used to decode the data in the file:

>>> tempdir.read('currencies.txt', 'utf-8') == some_text
True

6.2. Features of a temporary directory 49

testfixtures Documentation, Release 4.13.0

6.3 Working with an existing sandbox

Some testing infrastructure already provides a sandbox temporary directory, however that infrastructure might not
provide the same level of functionality that TempDirectory provides.

For this reason, it is possible to wrap an existing directory such as the following with a TempDirectory:

>>> from tempfile import mkdtemp
>>> thedir = mkdtemp()

When working with the context manager, this is done as follows:

>>> with TempDirectory(path=thedir) as d:
... d.write('file', b'data')
... d.makedir('directory')
... sorted(os.listdir(thedir))
'...'
'...'
['directory', 'file']

For the decorator, usage would be as follows:

from testfixtures import tempdir, compare

@tempdir(path=thedir)
def test_function(d):

d.write('file', b'data')
d.makedir('directory')
assert sorted(os.listdir(thedir))==['directory', 'file']

It is important to note that if an existing directory is used, it will not be deleted by either the decorator or the context
manager. You will need to make sure that the directory is cleaned up as required.

6.4 Using with Manuel

Manuel is an excellent take on testing the examples found in documentation. It works by applying a set of specialised
parsers to the documentation and testing or otherwise using the the blocks returned by those parsers.

The key differences between testing with Manuel and the traditional doctest are that it is possible to plug in different
types of parser, not just the “python console session” one, and so it is possible to test different types of examples.
TestFixtures provides one these plugins to aid working with TempDirectory objects. This plugin makes use of
topic directives with specific classes set to perform different actions.

The following sections describe how to use this plugin to help with writing temporary files and checking their contents.

6.4.1 Setting up

To use the Manuel plugin, you need to make sure a TempDirectory instance is available under a particular name in
the test globals. This name is then passed to the plugin’s constructor and the plugin is passed to Manuel’s TestSuite
constructor.

The following example shows how to return a test suite that will execute all of the examples below. These require
not only the TestFixtures plugin but also the Manuel plugins that give more traditional doctest behaviour, hidden code
blocks that are useful for setting things up and checking examples without breaking up the flow of the documentation,
and capturing of examples from the documentation to use for use in other forms of testing:

50 Chapter 6. Testing with files and directories

http://pypi.python.org/pypi/manuel

testfixtures Documentation, Release 4.13.0

from glob import glob
from manuel import doctest, capture
from manuel.testing import TestSuite
from os.path import join
from testfixtures import TempDirectory
from testfixtures.manuel import Files

from . import compat

def setUp(test):
test.globs['tempdir'] = TempDirectory()

def tearDown(test):
test.globs['tempdir'].cleanup()

def test_suite():
m = doctest.Manuel()
m += compat.Manuel()
m += capture.Manuel()
m += Files('tempdir')
return TestSuite(

m,
setUp=setUp,
tearDown=tearDown,

glob(join(path_to_your_docs, '.txt'))
)

6.4.2 Writing files

To write a file with the plugin, a topicwith a class of write-file is included in the documentation. The following
example is a complete reStructuredText file that shows how to write a file that is then used by a later example:

Here's an example configuration file:

.. topic:: example.cfg
:class: write-file

::

[A Section]
dir=frob
long: this value continues

on the next line

.. invisible-code-block: python

from testfixtures.compat import PY3
change to the temp directory
import os
original_dir = os.getcwd()
os.chdir(tempdir.path)

To parse this file using the :mod:`ConfigParser` module, you would
do the following:

6.4. Using with Manuel 51

testfixtures Documentation, Release 4.13.0

.. code-block:: python

if PY3:
from configparser import ConfigParser

else:
from ConfigParser import ConfigParser

config = ConfigParser()
config.read('example.cfg')

The items in the section are now available as follows:

>>> for name, value in sorted(config.items('A Section')):
... print('{0!r}:{1!r}'.format(name, value))
'dir':'frob'
'long':'this value continues\non the next line'

.. invisible-code-block: python

change out again
import os
os.chdir(original_dir)

6.4.3 Checking the contents of files

To read a file with the plugin, a topic with a class of read-file is included in the documentation. The following
example is a complete reStructuredText file that shows how to check the values written by the code being documented
while also using this check as part of the documentation:

.. invisible-code-block: python

from testfixtures.compat import PY3
change to the temp directory
import os
original_dir = os.getcwd()
os.chdir(tempdir.path)

To construct a configuration file using the :mod:`ConfigParser`
module, you would do the following:

.. code-block:: python

if PY3:
from configparser import ConfigParser

else:
from ConfigParser import ConfigParser

config = ConfigParser()
config.add_section('A Section')
config.set('A Section', 'dir', 'frob')
f = open('example.cfg','w')
config.write(f)
f.close()

The generated configuration file will be as follows:

.. topic:: example.cfg

52 Chapter 6. Testing with files and directories

testfixtures Documentation, Release 4.13.0

:class: read-file

::

[A Section]
dir = frob

.. config parser writes whitespace at the end, be careful when testing!

.. invisible-code-block: python

change out again
import os
os.chdir(original_dir)

6.4.4 Checking the contents of directories

While the TestFixtures plugin itself does not offer any facility for checking the contents of directories, Manuel’s
capture plugin can be used in conjunction with the existing features of a TempDirectory to illustrate the contents
expected in a directory seamlessly within the documentation.

Here’s a complete reStructuredText document that illustrates this technique:

Here's an example piece of code that creates some files and
directories:

.. code-block:: python

import os

def spew(path):
with open(os.path.join(path, 'root.txt'), 'wb') as f:

f.write(b'root output')
os.mkdir(os.path.join(path, 'subdir'))
with open(os.path.join(path, 'subdir', 'file.txt'), 'wb') as f:

f.write(b'subdir output')
os.mkdir(os.path.join(path, 'subdir', 'logs'))

This function is used as follows:

>>> spew(tempdir.path)

This will create the following files and directories::

root.txt
subdir/
subdir/file.txt
subdir/logs/

.. -> expected_listing

.. invisible-code-block: python

check the listing was as expected
tempdir.compare(expected_listing.strip().split('\n'))

6.4. Using with Manuel 53

testfixtures Documentation, Release 4.13.0

6.4.5 A note on encoding and line endings

As currently implemented, the plugin provided by TestFixtures only works with textual file content that can be encoded
using the ASCII character set. This content will always be written with ’\n’ line seperators and, when read, will
always have its line endings normalised to ’\n’. If you hit any limitations caused by this, please raise an issue in the
tracker on GitHub.

54 Chapter 6. Testing with files and directories

CHAPTER 7

Testing exceptions

The unittest support for asserting that exceptions are raised when expected is fairly weak. Like many other Python
testing libraries, TestFixtures has tools to help with this.

7.1 The ShouldRaise context manager

If you are using a version of Python where the with statement can be used, it’s recommended that you use the
ShouldRaise context manager.

Suppose we wanted to test the following function to make sure that the right exception was raised:

def the_thrower(throw=True):
if throw:

raise ValueError('Not good!')

The following example shows how to test that the correct exception is raised:

>>> from testfixtures import ShouldRaise
>>> with ShouldRaise(ValueError('Not good!')):
... the_thrower()

If the exception raised doesn’t match the one expected, ShouldRaise will raise an AssertionError causing the
tests in which it occurs to fail:

>>> with ShouldRaise(ValueError('Is good!')):
... the_thrower()
Traceback (most recent call last):
...
AssertionError: ValueError('Not good!',) raised, ValueError('Is good!',) expected

If you’re not concerned about anything more than the type of the exception that’s raised, you can check as follows:

>>> from testfixtures import ShouldRaise
>>> with ShouldRaise(ValueError):
... the_thrower()

If you’re feeling slack and just want to check that an exception is raised, but don’t care about the type of that exception,
the following will suffice:

>>> from testfixtures import ShouldRaise
>>> with ShouldRaise():
... the_thrower()

55

http://docs.python.org/library/unittest.html#module-unittest
http://docs.python.org/reference/compound_stmts.html#with

testfixtures Documentation, Release 4.13.0

If no exception is raised by the code under test, ShouldRaise will raise an AssertionError to indicate this:

>>> from testfixtures import ShouldRaise
>>> with ShouldRaise():
... the_thrower(throw=False)
Traceback (most recent call last):
...
AssertionError: No exception raised!

ShouldRaise has been implemented such that it can be successfully used to test if code raises both SystemExit
and KeyboardInterrupt exceptions.

To help with SystemExit and other exceptions that are tricky to construct yourself, ShouldRaise instances have
a raised attribute. This will contain the actual exception raised and can be used to inspect parts of it:

>>> import sys
>>> from testfixtures import ShouldRaise
>>> with ShouldRaise() as s:
... sys.exit(42)
>>> s.raised.code
42

7.2 The should_raise() decorator

If you are working in a traditional unittest environment and want to check that a particular test function raises an
exception, you may find the decorator suits your needs better:

from testfixtures import should_raise

@should_raise(ValueError('Not good!'))
def test_function():

the_thrower()

This decorator behaves exactly as the ShouldRaise context manager described in the documentation above.

Note: It is slightly recommended that you use the context manager rather than the decorator in most cases. With
the decorator, all exceptions raised within the decorated function will be checked, which can hinder test development.
With the context manager, you can make assertions about only the exact lines of code that you expect to raise the
exception.

7.3 Exceptions that are conditionally raised

Some exceptions are only raised in certain versions of Python. For example, in Python 2, bytes() will turn both
bytes and strings into bytes, while in Python 3, it will raise an exception when presented with a string. If you wish to
make assertions that this behaviour is expected, you can use the unless option to ShouldRaise as follows:

import sys
from testfixtures import ShouldRaise

PY2 = sys.version_info[:2] < (3, 0)

with ShouldRaise(TypeError, unless=PY2):
bytes('something')

56 Chapter 7. Testing exceptions

http://docs.python.org/library/unittest.html#module-unittest

testfixtures Documentation, Release 4.13.0

Note: Do not abuse this functionality to make sloppy assertions. It is always better have two different tests that cover
a case when an exception should be raised and a case where an exception should not be raised rather than using it
above functionality. It is only provided to help in cases where something in the environment that cannot be mocked
out or controlled influences whether or not an exception is raised.

7.3. Exceptions that are conditionally raised 57

testfixtures Documentation, Release 4.13.0

58 Chapter 7. Testing exceptions

CHAPTER 8

Testing warnings

The unittest support for asserting that warnings are issued when expected is fairly convoluted, so TestFixtures has
tools to help with this.

8.1 The ShouldWarn context manager

This context manager allows you to assert that particular warnings are recorded in a block of code, for example:

>>> from warnings import warn
>>> from testfixtures import ShouldWarn
>>> with ShouldWarn(UserWarning('you should fix that')):
... warn('you should fix that')

If a warning issued doesn’t match the one expected, ShouldWarn will raise an AssertionError causing the test
in which it occurs to fail:

>>> from warnings import warn
>>> from testfixtures import ShouldWarn
>>> with ShouldWarn(UserWarning('you should fix that')):
... warn("sorry dave, I can't let you do that")
Traceback (most recent call last):
...
AssertionError: sequence not as expected:

same:
[]

expected:
[

<C(failed):....UserWarning>
args:('you should fix that',) != ("sorry dave, I can't let you do that",)
</C>]

actual:
[UserWarning("sorry dave, I can't let you do that",)]

You can check multiple warnings in a particular piece of code:

>>> from warnings import warn
>>> from testfixtures import ShouldWarn
>>> with ShouldWarn(UserWarning('you should fix that'),
... UserWarning('and that too')):

59

http://docs.python.org/library/unittest.html#module-unittest

testfixtures Documentation, Release 4.13.0

... warn('you should fix that')

... warn('and that too')

If you want to inspect more details of the warnings issued, you can capture them into a list as follows:

>>> from warnings import warn_explicit
>>> from testfixtures import ShouldWarn
>>> with ShouldWarn() as captured:
... warn_explicit(message='foo', category=DeprecationWarning,
... filename='bar.py', lineno=42)
>>> len(captured)
1
>>> captured[0].message
DeprecationWarning('foo',)
>>> captured[0].lineno
42

8.2 The ShouldNotWarn context manager

If you do not expect any warnings to be logged in a piece of code, you can use the ShouldNotWarn context manager.
If any warnings are issued in the context it manages, it will raise an AssertionError to indicate this:

>>> from warnings import warn
>>> from testfixtures import ShouldNotWarn
>>> with ShouldNotWarn():
... warn("woah dude")
Traceback (most recent call last):
...
AssertionError: sequence not as expected:

same:
[]

expected:
[]

actual:
[UserWarning('woah dude',)]

60 Chapter 8. Testing warnings

CHAPTER 9

Testing use of the subprocess package

When using the subprocess package there are two approaches to testing:

• Have your tests exercise the real processes being instantiated and used.

• Mock out use of the subprocess package and provide expected output while recording interactions with the
package to make sure they are as expected.

While the first of these should be preferred, it means that you need to have all the external software available every-
where you wish to run tests. Your tests will also need to make sure any dependencies of that software on an external
environment are met. If that external software takes a long time to run, your tests will also take a long time to run.

These challenges can often make the second approach more practical and can be the more pragmatic approach when
coupled with a mock that accurately simulates the behaviour of a subprocess. MockPopen is an attempt to provide
just such a mock.

Note: To use MockPopen, you must have the mock package installed.

9.1 Example usage

As an example, suppose you have code such as the following that you need to test:

from subprocess import Popen, PIPE

def my_func():
process = Popen('svn ls -R foo', stdout=PIPE, stderr=PIPE, shell=True)
out, err = process.communicate()
if process.returncode:

raise RuntimeError('something bad happened')
return out

Tests that exercises this code using MockPopen could be written as follows:

from unittest import TestCase

from mock import call
from testfixtures import Replacer, ShouldRaise, compare
from testfixtures.popen import MockPopen

61

http://docs.python.org/library/subprocess.html#module-subprocess
http://docs.python.org/library/subprocess.html#module-subprocess

testfixtures Documentation, Release 4.13.0

class TestMyFunc(TestCase):

def setUp(self):
self.Popen = MockPopen()
self.r = Replacer()
self.r.replace(dotted_path, self.Popen)
self.addCleanup(self.r.restore)

def test_example(self):
set up
self.Popen.set_command('svn ls -R foo', stdout=b'o', stderr=b'e')

testing of results
compare(my_func(), b'o')

testing calls were in the right order and with the correct parameters:
compare([

call.Popen('svn ls -R foo',
shell=True, stderr=PIPE, stdout=PIPE),

call.Popen_instance.communicate()
], Popen.mock.method_calls)

def test_example_bad_returncode(self):
set up
Popen.set_command('svn ls -R foo', stdout=b'o', stderr=b'e',

returncode=1)

testing of error
with ShouldRaise(RuntimeError('something bad happened')):

my_func()

9.2 Passing input to processes

If your testing requires passing input to the subprocess, you can do so by checking for the input passed to
communicate() method when you check the calls on the mock as shown in this example:

def test_communicate_with_input(self):
setup
Popen = MockPopen()
Popen.set_command('a command')
usage
process = Popen('a command', stdout=PIPE, stderr=PIPE, shell=True)
out, err = process.communicate('foo')
test call list
compare([

call.Popen('a command', shell=True, stderr=-1, stdout=-1),
call.Popen_instance.communicate('foo'),
], Popen.mock.method_calls)

Note: Accessing .stdin isn’t current supported by this mock.

62 Chapter 9. Testing use of the subprocess package

http://docs.python.org/library/subprocess.html#subprocess.Popen.communicate

testfixtures Documentation, Release 4.13.0

9.3 Reading from stdout and stderr

The .stdout and .stderr attributes of the mock returned by MockPopen will be file-like objects as with the real
Popen and can be read as shown in this example:

def test_read_from_stdout_and_stderr(self):
setup
Popen = MockPopen()
Popen.set_command('a command', stdout=b'foo', stderr=b'bar')
usage
process = Popen('a command', stdout=PIPE, stderr=PIPE, shell=True)
compare(process.stdout.read(), b'foo')
compare(process.stderr.read(), b'bar')
test call list
compare([

call.Popen('a command', shell=True, stderr=PIPE, stdout=PIPE),
], Popen.mock.method_calls)

Warning: While these streams behave a lot like the streams of a real Popen object, they do not exhibit the
deadlocking behaviour that can occur when the two streams are read as in the example above. Be very careful
when reading .stdout and .stderr and consider using communicate instead.

9.4 Specifying the return code

Often code will need to behave differently depending on the return code of the launched process. Specifying a simu-
lated response code, along with testing for the correct usage of wait(), can be seen in the following example:

def test_wait_and_return_code(self):
setup
Popen = MockPopen()
Popen.set_command('a command', returncode=3)
usage
process = Popen('a command')
compare(process.returncode, None)
result checking
compare(process.wait(), 3)
compare(process.returncode, 3)
test call list
compare([

call.Popen('a command'),
call.Popen_instance.wait(),
], Popen.mock.method_calls)

9.5 Checking for signal sending

Calls to .send_signal(), .terminate() and .kill() are all recorded by the mock returned by MockPopen
but otherwise do nothing as shown in the following example, which doesn’t make sense for a real test of sub-process
usage but does show how the mock behaves:

def test_send_signal(self):
setup
Popen = MockPopen()

9.3. Reading from stdout and stderr 63

http://docs.python.org/library/subprocess.html#subprocess.Popen
http://docs.python.org/library/subprocess.html#subprocess.Popen
http://docs.python.org/library/subprocess.html#subprocess.Popen.wait

testfixtures Documentation, Release 4.13.0

Popen.set_command('a command')
usage
process = Popen('a command', stdout=PIPE, stderr=PIPE, shell=True)
process.send_signal(0)
result checking
compare([

call.Popen('a command', shell=True, stderr=-1, stdout=-1),
call.Popen_instance.send_signal(0),
], Popen.mock.method_calls)

9.6 Polling a process

The poll() method is often used as part of a loop in order to do other work while waiting for a sub-process to
complete. The mock returned by MockPopen supports this by allowing the .poll() method to be called a number
of times before the returncode is set using the poll_count parameter as shown in the following example:

def test_poll_until_result(self):
setup
Popen = MockPopen()
Popen.set_command('a command', returncode=3, poll_count=2)
example usage
process = Popen('a command')
while process.poll() is None:

you'd probably have a sleep here, or go off and
do some other work.
pass

result checking
compare(process.returncode, 3)
compare([

call.Popen('a command'),
call.Popen_instance.poll(),
call.Popen_instance.poll(),
call.Popen_instance.poll(),
], Popen.mock.method_calls)

9.7 Using default behaviour

If you’re testing something that needs to make many calls to many different commands that all behave the same, it can
be tedious to specify the behaviour of each with set_command. For this case, MockPopen has the set_default
method which can be used to set the behaviour of any command that has not been specified with set_command as
shown in the following example:

def test_default_behaviour(self):
set up
self.Popen.set_default(stdout=b'o', stderr=b'e')

testing of results
compare(my_func(), b'o')

testing calls were in the right order and with the correct parameters:
compare([

call.Popen('svn ls -R foo',
shell=True, stderr=PIPE, stdout=PIPE),

64 Chapter 9. Testing use of the subprocess package

http://docs.python.org/library/subprocess.html#subprocess.Popen.poll

testfixtures Documentation, Release 4.13.0

call.Popen_instance.communicate()
], Popen.mock.method_calls)

9.7. Using default behaviour 65

testfixtures Documentation, Release 4.13.0

66 Chapter 9. Testing use of the subprocess package

CHAPTER 10

Testing with zope.component

zope.component is a fantastic aspect-oriented library for Python, however its unit testing support is somewhat con-
voluted. If you need to test code that registers adapters, utilities and the like then you may need to provide a sterile
component registry. For historical reasons, component registries are known as Site Managers in zope.component.

TestFixtures provides the a TestComponents helper which provides just such a sterile registry. It should be
instantiated in your TestCase‘s setUp() method. It’s uninstall() method should be called in the test’s
tearDown() method.

Normally, zope.component.getSiteManager() returns whatever the current registry is. This may be influ-
enced by frameworks that use zope.component which can means that unit tests have no baseline to start with:

>>> original = getSiteManager()
>>> print(original)
<BaseGlobalComponents base>

Once we’ve got a TestComponents in place, we know what we’re getting:

>>> components = TestComponents()
>>> getSiteManager()
<Components Testing>

The registry that getSiteManager() returns is now also available as an attribute of the TestComponents
instance:

>>> getSiteManager() is components.registry
True

It’s also empty:

>>> tuple(components.registry.registeredUtilities())
()
>>> tuple(components.registry.registeredAdapters())
()
>>> tuple(components.registry.registeredHandlers())
()

You can do whatever you like with this registry. When you’re done, just call the uninstall() method:

>>> components.uninstall()

Now you’ll have the original registy back in place:

>>> getSiteManager() is original
True

67

http://pypi.python.org/pypi/zope.component

testfixtures Documentation, Release 4.13.0

68 Chapter 10. Testing with zope.component

CHAPTER 11

Utilities

This section describes a few handy functions that didn’t fit nicely in any other section.

11.1 The generator helper

It can be handy when testing to be able to turn a simple sequence into a generator. This can be necessary when you
want to check that your code will behave correctly when processing a generator instead of a simple sequence, or when
you’re looking to make assertions about the expected return value of a callable that returns a generator.

If you need to turn a simple sequence into a generator, the generator() function is the way to do it:

>>> from testfixtures import generator
>>> generator(1,2,3)
<generator object ...>

Iterating over this generator will return the arguments passed to the generator() function:

>>> for i in _:
... print(i, end=' ')
1 2 3

11.2 The wrap helper

The wrap() helper is a decorator function that allows you to wrap the call to the decorated callable with calls to other
callables. This can be useful when you want to perform setup and teardown actions either side of a test function.

For example, take the following functions:

def before():
print("before")

def after():
print("after")

The wrap() helper can be used to wrap a function with these:

from testfixtures import wrap

@wrap(before,after)
def a_function():

print("a_function")

69

testfixtures Documentation, Release 4.13.0

When the wrapped function is executed, the output is as follows:

>>> a_function()
before
a_function
after

The section argument to wrap() is optional:

from testfixtures import wrap

@wrap(before)
def a_function():

print("a_function")

Now, the wrapped function gives the following output when executed:

>>> a_function()
before
a_function

Multiple wrapping functions can be provided by stacking wrap() decorations:

def before1():
print("before 1")

def after1():
print("after 1")

def before2():
print("before 2")

def after2():
print("after 2")

@wrap(before2,after2)
@wrap(before1,after1)
def a_function():

print("a_function")

The order of execution is illustrated below:

>>> a_function()
before 1
before 2
a_function
after 2
after 1

The results of calling the wrapping functions executed before the wrapped function can be made available to the
wrapped function provided it accepts positional arguments for these results:

def before1():
return "return 1"

def before2():
return "return 2"

@wrap(before2)
@wrap(before1)
def a_function(r1,r2):

70 Chapter 11. Utilities

testfixtures Documentation, Release 4.13.0

print(r1)
print(r2)

Calling the wrapped function illustrates the behaviour:

>>> a_function()
return 1
return 2

Finally, the return value of the wrapped function will always be that of the original function:

def before1():
return 1

def after1():
return 2

def before2():
return 3

def after2():
return 4

@wrap(before2,after2)
@wrap(before1,after2)
def a_function():

return 'original'

When the above wrapped function is executed, the original return value is still returned:

>>> a_function()
'original'

If you’re looking for a description of a particular tool, please see the API reference:

11.2. The wrap helper 71

testfixtures Documentation, Release 4.13.0

72 Chapter 11. Utilities

CHAPTER 12

API Reference

class testfixtures.Comparison(object_or_type, attribute_dict=None, strict=True, **attributes)
These are used when you need to compare objects that do not natively support comparison.

Parameters

• object_or_type – The object or class from which to create the Comparison.

• attribute_dict – An optional dictionary containing attibutes to place on the
Comparison.

• strict – If true, any expected attributes not present or extra attributes not expected on the
object involved in the comparison will cause the comparison to fail.

• attributes – Any other keyword parameters passed will placed as attributes on the
Comparison.

class testfixtures.LogCapture(names=None, install=True, level=1, propagate=None,
attributes=(‘name’, ‘levelname’, ‘getMessage’), recur-
sive_check=False)

These are used to capture entries logged to the Python logging framework and make assertions about what was
logged.

Parameters

• names – A string (or tuple of strings) containing the dotted name(s) of loggers to capture.
By default, the root logger is captured.

• install – If True, the LogCapture will be installed as part of its instantiation.

• propagate – If specified, any captured loggers will have their propagate attribute set to
the supplied value. This can be used to prevent propagation from a child logger to a parent
logger that has configured handlers.

• attributes – The sequence of attribute names to return for each record or a callable that
extracts a row from a record..

If a sequence of attribute names, those attributes will be taken from the LogRecord. If an
attribute is callable, the value used will be the result of calling it. If an attribute is missing,
None will be used in its place.

If a callable, it will be called with the LogRecord and the value returned will be used as
the row..

• recursive_check – If True, log messages will be compared recursively by
LogCapture.check().

73

http://docs.python.org/library/logging.html#logging.LogRecord
http://docs.python.org/library/logging.html#logging.LogRecord

testfixtures Documentation, Release 4.13.0

check(*expected)
This will compare the captured entries with the expected entries provided and raise an AssertionError
if they do not match.

Parameters expected – A sequence of 3-tuples containing the expected log entries. Each
tuple should be of the form (logger_name, string_level, message)

clear()
Clear any entries that have been captured.

install()
Install this LogHandler into the Python logging framework for the named loggers.

This will remove any existing handlers for those loggers and drop their level to 1 in order to capture all
logging.

uninstall()
Un-install this LogHandler from the Python logging framework for the named loggers.

This will re-instate any existing handlers for those loggers that were removed during installation and retore
their level that prior to installation.

classmethod uninstall_all()
This will uninstall all existing LogHandler objects.

class testfixtures.OutputCapture(separate=False)
A context manager for capturing output to the sys.stdout and sys.stderr streams.

Parameters separate – If True, stdout and stderr will be captured separately and their
expected values must be passed to compare().

Note: If separate is passed as True, OutputCapture.captured will be an empty string.

captured
A property containing any output that has been captured so far.

compare(expected=’‘, stdout=’‘, stderr=’‘)
Compare the captured output to that expected. If the output is not the same, an AssertionError will
be raised.

Parameters

• expected – A string containing the expected combined output of stdout and stderr.

• stdout – A string containing the expected output to stdout.

• stderr – A string containing the expected output to stderr.

disable()
Disable the output capture if it is enabled.

enable()
Enable the output capture if it is disabled.

class testfixtures.Replace(target, replacement, strict=True)
A context manager that uses a Replacer to replace a single target.

Parameters

• target – A string containing the dotted-path to the object to be replaced. This path may
specify a module in a package, an attribute of a module, or any attribute of something
contained within a module.

74 Chapter 12. API Reference

testfixtures Documentation, Release 4.13.0

• replacement – The object to use as a replacement.

• strict – When True, an exception will be raised if an attempt is made to replace an object
that does not exist.

class testfixtures.Replacer
These are used to manage the mocking out of objects so that units of code can be tested without having to rely
on their normal dependencies.

replace(target, replacement, strict=True)
Replace the specified target with the supplied replacement.

Parameters

• target – A string containing the dotted-path to the object to be replaced. This path may
specify a module in a package, an attribute of a module, or any attribute of something
contained within a module.

• replacement – The object to use as a replacement.

• strict – When True, an exception will be raised if an attempt is made to replace an
object that does not exist.

restore()
Restore all the original objects that have been replaced by calls to the replace() method of this
Replacer.

testfixtures.replace(target, replacement, strict=True)
A decorator to replace a target object for the duration of a test function.

Parameters

• target – A string containing the dotted-path to the object to be replaced. This path may
specify a module in a package, an attribute of a module, or any attribute of something
contained within a module.

• replacement – The object to use as a replacement.

• strict – When True, an exception will be raised if an attempt is made to replace an object
that does not exist.

class testfixtures.RoundComparison(value, precision)
An object that can be used in comparisons of expected and actual numerics to a specified precision.

Parameters

• value – numeric to be compared.

• precision – Number of decimal places to round to in order to perform the comparison.

class testfixtures.RangeComparison(lower_bound, upper_bound)
An object that can be used in comparisons of orderable types to check that a value specified within the given
range.

Parameters

• lower_bound – the inclusive lower bound for the acceptable range.

• upper_bound – the inclusive upper bound for the acceptable range.

class testfixtures.ShouldRaise(exception=None, unless=False)
This context manager is used to assert that an exception is raised within the context it is managing.

Parameters

• exception – This can be one of the following:

75

testfixtures Documentation, Release 4.13.0

– None, indicating that an exception must be raised, but the type is unimportant.

– An exception class, indicating that the type of the exception is important but not the
parameters it is created with.

– An exception instance, indicating that an exception exactly matching the one supplied
should be raised.

• unless – Can be passed a boolean that, when True indicates that no exception is expected.
This is useful when checking that exceptions are only raised on certain versions of Python.

raised = None
The exception captured by the context manager. Can be used to inspect specific attributes of the exception.

class testfixtures.ShouldWarn(*expected)
This context manager is used to assert that warnings are issued within the context it is managing.

Parameters expected –

This should be a sequence made up of one or more elements, each of one of the following
types:

• A warning class, indicating that the type of the warnings is important but not the param-
eters it is created with.

• A warning instance, indicating that a warning exactly matching the one supplied should
have been issued.

If no expected warnings are passed, you will need to inspect the contents of the list returned by
the context manager.

class testfixtures.ShouldNotWarn
This context manager is used to assert that no warnings are issued within the context it is managing.

class testfixtures.StringComparison(regex_source)
An object that can be used in comparisons of expected and actual strings where the string expected matches a
pattern rather than a specific concrete string.

Parameters regex_source – A string containing the source for a regular expression that will be
used whenever this StringComparison is compared with any basestring instance.

class testfixtures.TempDirectory(ignore=(), create=True, path=None, encoding=None)
A class representing a temporary directory on disk.

Parameters

• ignore – A sequence of strings containing regular expression patterns that match file-
names that should be ignored by the TempDirectory listing and checking methods.

• create – If True, the temporary directory will be created as part of class instantiation.

• path – If passed, this should be a string containing a physical path to use as the temporary
directory. When passed, TempDirectory will not create a new directory to use.

• encoding – A default encoding to use for read() and write() operations when the
encoding parameter is not passed to those methods.

check(*expected)
Deprecated since version 4.3.0.

Compare the contents of the temporary directory with the expected contents supplied.

This method only checks the root of the temporary directory.

Parameters expected – A sequence of strings containing the names expected in the directory.

76 Chapter 12. API Reference

testfixtures Documentation, Release 4.13.0

check_all(dir, *expected)
Deprecated since version 4.3.0.

Recursively compare the contents of the specified directory with the expected contents supplied.

Parameters

• dir – The directory to check, which can be:

– A tuple of strings, indicating that the elements of the tuple should be used as directory
names to traverse from the root of the temporary directory to find the directory to be
checked.

– A forward-slash separated string, indicating the directory or subdirectory that should be
traversed to from the temporary directory and checked.

– An empty string, indicating that the whole temporary directory should be checked.

• expected – A sequence of strings containing the paths expected in the directory. These
paths should be forward-slash separated and relative to the root of the temporary directory.

check_dir(dir, *expected)
Deprecated since version 4.3.0.

Compare the contents of the specified subdirectory of the temporary directory with the expected contents
supplied.

This method will only check the contents of the subdirectory specified and will not recursively check
subdirectories.

Parameters

• dir – The subdirectory to check, which can be:

– A tuple of strings, indicating that the elements of the tuple should be used as directory
names to traverse from the root of the temporary directory to find the directory to be
checked.

– A forward-slash separated string, indicating the directory or subdirectory that should be
traversed to from the temporary directory and checked.

• expected – A sequence of strings containing the names expected in the directory.

cleanup()
Delete the temporary directory and anything in it. This TempDirectory cannot be used again unless
create() is called.

classmethod cleanup_all()
Delete all temporary directories associated with all TempDirectory objects.

compare(expected, path=None, files_only=False, recursive=True, followlinks=False)
Compare the expected contents with the actual contents of the temporary directory. An
AssertionError will be raised if they are not the same.

Parameters

• expected – A sequence of strings containing the paths expected in the directory. These
paths should be forward-slash separated and relative to the root of the temporary directory.

• path – The path to use as the root for the comparison, relative to the root of the temporary
directory. This can either be:

– A tuple of strings, making up the relative path.

– A forward-slash separated string.

77

testfixtures Documentation, Release 4.13.0

If it is not provided, the root of the temporary directory will be used.

• files_only – If specified, directories will be excluded from the list of actual paths used
in the comparison.

• recursive – If passed as False, only the direct contents of the directory specified by
path will be included in the actual contents used for comparison.

• followlinks – If passed as True, symlinks and hard links will be followed when
recursively building up the actual list of directory contents.

create()
Create a temporary directory for this instance to use if one has not already been created.

getpath(path)
Return the full path on disk that corresponds to the path relative to the temporary directory that is passed
in.

Parameters path – The path to the file to create, which can be:

• A tuple of strings.

• A forward-slash separated string.

Returns A string containing the full path.

listdir(path=None, recursive=False)
Print the contents of the specified directory.

Parameters

• path – The path to list, which can be:

– None, indicating the root of the temporary directory should be listed.

– A tuple of strings, indicating that the elements of the tuple should be used as directory
names to traverse from the root of the temporary directory to find the directory to be
listed.

– A forward-slash separated string, indicating the directory or subdirectory that should be
traversed to from the temporary directory and listed.

• recursive – If True, the directory specified will have its subdirectories recursively
listed too.

makedir(dirpath)
Make an empty directory at the specified path within the temporary directory. Any intermediate subdirec-
tories that do not exist will also be created.

Parameters dirpath – The directory to create, which can be:

• A tuple of strings.

• A forward-slash separated string.

Returns The full path of the created directory.

path = None
The physical path of the TempDirectory on disk

read(filepath, encoding=None)
Reads the file at the specified path within the temporary directory.

The file is always read in binary mode. Bytes will be returned unless an encoding is supplied, in which
case a unicode string of the decoded data will be returned.

78 Chapter 12. API Reference

testfixtures Documentation, Release 4.13.0

Parameters

• filepath – The path to the file to read, which can be:

– A tuple of strings.

– A forward-slash separated string.

• encoding – The encoding used to decode the data in the file.

Returns A string containing the data read.

write(filepath, data, encoding=None)
Write the supplied data to a file at the specified path within the temporary directory. Any subdirectories
specified that do not exist will also be created.

The file will always be written in binary mode. The data supplied must either be bytes or an encoding must
be supplied to convert the string into bytes.

Parameters

• filepath – The path to the file to create, which can be:

– A tuple of strings.

– A forward-slash separated string.

• data – A string containing the data to be written.

• encoding – The encoding to be used if data is not bytes. Should not be passed if data is
already bytes.

Returns The full path of the file written.

testfixtures.compare(x, y, prefix=None, suffix=None, raises=True, recursive=True, strict=False,
comparers=None, **kw)

Compare the two arguments passed either positionally or using explicit expected and actual keyword
paramaters. An AssertionError will be raised if they are not the same. The AssertionError raised
will attempt to provide descriptions of the differences found.

Any other keyword parameters supplied will be passed to the functions that end up doing the comparison. See
the API documentation below for details of these.

Parameters

• prefix – If provided, in the event of an AssertionError being raised, the prefix
supplied will be prepended to the message in the AssertionError.

• suffix – If provided, in the event of an AssertionError being raised, the suffix sup-
plied will be appended to the message in the AssertionError.

• raises – If False, the message that would be raised in the AssertionError will be
returned instead of the exception being raised.

• recursive – If True, when a difference is found in a nested data structure, attempt to
highlight the location of the difference.

• strict – If True, objects will only compare equal if they are of the same type as well as
being equal.

• comparers – If supplied, should be a dictionary mapping types to comparer functions for
those types. These will be added to the global comparer registry for the duration of this call.

testfixtures.comparison.register(type, comparer)
Register the supplied comparer for the specified type. This registration is global and will be in effect from the
point this function is called until the end of the current process.

79

testfixtures Documentation, Release 4.13.0

testfixtures.comparison.compare_simple(x, y, context)
Returns a very simple textual difference between the two supplied objects.

testfixtures.comparison.compare_with_type(x, y, context)
Return a textual description of the difference between two objects including information about their types.

testfixtures.comparison.compare_sequence(x, y, context)
Returns a textual description of the differences between the two supplied sequences.

testfixtures.comparison.compare_generator(x, y, context)
Returns a textual description of the differences between the two supplied generators.

This is done by first unwinding each of the generators supplied into tuples and then passing those tuples to
compare_sequence().

testfixtures.comparison.compare_tuple(x, y, context)
Returns a textual difference between two tuples or collections.namedtuple() instances.

The presence of a _fields attribute on a tuple is used to decide whether or not it is a namedtuple().

testfixtures.comparison.compare_dict(x, y, context)
Returns a textual description of the differences between the two supplied dictionaries.

testfixtures.comparison.compare_set(x, y, context)
Returns a textual description of the differences between the two supplied sets.

testfixtures.comparison.compare_text(x, y, context)
Returns an informative string describing the differences between the two supplied strings. The way in which
this comparison is performed can be controlled using the following parameters:

Parameters

• blanklines – If False, then when comparing multi-line strings, any blank lines in either
argument will be ignored.

• trailing_whitespace – If False, then when comparing multi-line strings, trailing
whilespace on lines will be ignored.

• show_whitespace – If True, then whitespace characters in multi-line strings will be
replaced with their representations.

testfixtures.diff(x, y, x_label=’‘, y_label=’‘)
A shorthand function that uses difflib to return a string representing the differences between the two string
arguments.

Most useful when comparing multi-line strings.

testfixtures.generator(*args)
A utility function for creating a generator that will yield the supplied arguments.

testfixtures.log_capture(*names, **kw)
A decorator for making a LogCapture installed an available for the duration of a test function.

Parameters names – An optional sequence of names specifying the loggers to be captured. If not
specified, the root logger will be captured.

Keyword parameters other than install may also be supplied and will be passed on to the LogCapture
constructor.

class testfixtures.should_raise(exception=None, unless=None)
A decorator to assert that the decorated function will raised an exception. An exception class or exception
instance may be passed to check more specifically exactly what exception will be raised.

Parameters

80 Chapter 12. API Reference

http://docs.python.org/library/collections.html#collections.namedtuple
http://docs.python.org/library/collections.html#collections.namedtuple
http://docs.python.org/library/difflib.html#module-difflib

testfixtures Documentation, Release 4.13.0

• exception – This can be one of the following:

– None, indicating that an exception must be raised, but the type is unimportant.

– An exception class, indicating that the type of the exception is important but not the
parameters it is created with.

– An exception instance, indicating that an exception exactly matching the one supplied
should be raised.

• unless – Can be passed a boolean that, when True indicates that no exception is expected.
This is useful when checking that exceptions are only raised on certain versions of Python.

testfixtures.tempdir(*args, **kw)
A decorator for making a TempDirectory available for the duration of a test function.

All arguments and parameters are passed through to the TempDirectory constructor.

testfixtures.test_date(year=2001, month=1, day=1, delta=None, delta_type=’days’, strict=False)
A function that returns a mock object that can be used in place of the datetime.date class but where the
return value of today() can be controlled.

If a single positional argument of None is passed, then the queue of dates to be returned will be empty and you
will need to call set() or add() before calling today().

Parameters

• year – An optional year used to create the first date returned by today().

• month – An optional month used to create the first date returned by today().

• day – An optional day used to create the first date returned by today().

• delta – The size of the delta to use between values returned from today(). If not
specified, it will increase by 1 with each call to today().

• delta_type – The type of the delta to use between values returned from today(). This
can be any keyword parameter accepted by the timedelta constructor.

• strict – If True, calling the mock class and any of its methods will result in an instance
of the mock being returned. If False, the default, an instance of date will be returned
instead.

The mock returned will behave exactly as the datetime.date class with the exception of the following
members:

tdate.add(*args, **kw)
This will add the datetime.date created from the supplied parameters to the queue of dates to be
returned by today(). An instance of date may also be passed as a single positional argument.

tdate.set(*args, **kw)
This will set the datetime.date created from the supplied parameters as the next date to be returned
by today(), regardless of any dates in the queue. An instance of date may also be passed as a single
positional argument.

classmethod tdate.today()
This will return the next supplied or calculated date from the internal queue, rather than the actual current
date.

testfixtures.test_datetime(year=2001, month=1, day=1, hour=0, minute=0, second=0,
microsecond=0, tzinfo=None, delta=None, delta_type=’seconds’,
date_type=datetime.date, strict=False)

A function that returns a mock object that can be used in place of the datetime.datetime class but where
the return value of now() can be controlled.

81

http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.date.today
http://docs.python.org/library/datetime.html#datetime.date.today
http://docs.python.org/library/datetime.html#datetime.date.today
http://docs.python.org/library/datetime.html#datetime.date.today
http://docs.python.org/library/datetime.html#datetime.date.today
http://docs.python.org/library/datetime.html#datetime.date.today
http://docs.python.org/library/datetime.html#datetime.date.today
http://docs.python.org/library/datetime.html#datetime.timedelta
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.date.today
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.date.today
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.datetime

testfixtures Documentation, Release 4.13.0

If a single positional argument of None is passed, then the queue of datetimes to be returned will be empty and
you will need to call set() or add() before calling now() or utcnow().

Parameters

• year – An optional year used to create the first datetime returned by now().

• month – An optional month used to create the first datetime returned by now().

• day – An optional day used to create the first datetime returned by now().

• hour – An optional hour used to create the first datetime returned by now().

• minute – An optional minute used to create the first datetime returned by now().

• second – An optional second used to create the first datetime returned by now().

• microsecond – An optional microsecond used to create the first datetime returned by
now().

• tzinfo – An optional tzinfo that will be used to indicate the timezone intended for the
values returned by returned by now(). It will be used to correctly calculate return values
when tz is passed to now() and when utcnow() is called.

• delta – The size of the delta to use between values returned from now(). If not specified,
it will increase by 1 with each call to now().

• delta_type – The type of the delta to use between values returned from now(). This
can be any keyword parameter accepted by the timedelta constructor.

• date_type – The type to use for the return value of the date() method. This can help
with gotchas that occur when type checking if performed on values returned by the mock’s
date() method.

• strict – If True, calling the mock class and any of its methods will result in an instance
of the mock being returned. If False, the default, an instance of datetime will be
returned instead.

The mock returned will behave exactly as the datetime.datetime class with the exception of the following
members:

tdatetime.add(*args, **kw)
This will add the datetime.datetime created from the supplied parameters to the queue of datetimes
to be returned by now() or utcnow(). An instance of datetime may also be passed as a single
positional argument.

tdatetime.set(*args, *kw)
This will set the datetime.datetime created from the supplied parameters as the next datetime to be
returned by now() or utcnow(), clearing out any datetimes in the queue. An instance of datetime
may also be passed as a single positional argument.

classmethod tdatetime.now([tz])
Parameters tz – An optional timezone to apply to the returned time. If supplied, it must be an

instance of a tzinfo subclass.

This will return the next supplied or calculated datetime from the internal queue, rather than the actual
current datetime.

If tz is supplied, it will be applied to the datetime that would have have been returned from the internal
queue, treating that datetime as if it were in the UTC timezone.

82 Chapter 12. API Reference

http://docs.python.org/library/datetime.html#datetime.timedelta
http://docs.python.org/library/datetime.html#datetime.datetime.date
http://docs.python.org/library/datetime.html#datetime.datetime.date
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.tzinfo

testfixtures Documentation, Release 4.13.0

classmethod tdatetime.utcnow()
This will return the next supplied or calculated datetime from the internal queue, rather than the actual
current UTC datetime.

No timezone will be applied, even that supplied to the constructor.

classmethod tdatetime.date()
This will return the date component of the current mock instance, but using the date type supplied when
the mock class was created.

testfixtures.test_time(year=2001, month=1, day=1, hour=0, minute=0, second=0, microsec-
ond=0, tzinfo=None, delta=None, delta_type=’seconds’)

A function that returns a mock object that can be used in place of the time.time function but where the return
value can be controlled.

If a single positional argument of None is passed, then the queue of times to be returned will be empty and you
will need to call set() or add() before calling the mock.

Parameters

• year – An optional year used to create the first time returned.

• month – An optional month used to create the first time.

• day – An optional day used to create the first time.

• hour – An optional hour used to create the first time.

• minute – An optional minute used to create the first time.

• second – An optional second used to create the first time.

• microsecond – An optional microsecond used to create the first time.

• delta – The size of the delta to use between values returned. If not specified, it will
increase by 1 with each call to the mock.

• delta_type – The type of the delta to use between values returned. This can be any
keyword parameter accepted by the timedelta constructor.

The mock additionally has the following methods available on it:

ttime.add(*args, **kw)
This will add the time specified by the supplied parameters to the queue of times to be returned by calls
to the mock. The parameters are the same as the datetime.datetime constructor. An instance of
datetime may also be passed as a single positional argument.

ttime.set(*args, **kw)
This will set the time specified by the supplied parameters as the next time to be returned by a call to the
mock, regardless of any times in the queue. The parameters are the same as the datetime.datetime
constructor. An instance of datetime may also be passed as a single positional argument.

testfixtures.wrap(before, after=None)
A decorator that causes the supplied callables to be called before or after the wrapped callable, as appropriate.

testfixtures.not_there
A singleton used to represent the absence of a particular attribute.

class testfixtures.popen.MockPopen
A specialised mock for testing use of subprocess.Popen. An instance of this class can be used in place of
the subprocess.Popen and is often inserted where it’s needed using mock.patch() or a Replacer.

communicate(input=None)
Simulate calls to subprocess.Popen.communicate()

83

http://docs.python.org/library/datetime.html#datetime.timedelta
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/subprocess.html#subprocess.Popen
http://docs.python.org/library/subprocess.html#subprocess.Popen
http://docs.python.org/library/subprocess.html#subprocess.Popen.communicate

testfixtures Documentation, Release 4.13.0

kill()
Simulate calls to subprocess.Popen.kill()

poll()
Simulate calls to subprocess.Popen.poll()

send_signal(signal)
Simulate calls to subprocess.Popen.send_signal()

set_command(command, stdout=b’‘, stderr=b’‘, returncode=0, pid=1234, poll_count=3)
Set the behaviour of this mock when it is used to simulate the specified command.

Parameters

• command – A string representing the command to be simulated.

• stdout – A string representing the simulated content written by the process to the stdout
pipe.

• stderr – A string representing the simulated content written by the process to the stderr
pipe.

• returncode – An integer representing the return code of the simulated process.

• pid – An integer representing the process identifier of the simulated process. This is
useful if you have code the prints out the pids of running processes.

• poll_count – Specifies the number of times MockPopen.poll() can be called be-
fore MockPopen.returncode is set and returned by MockPopen.poll().

set_default(stdout=b’‘, stderr=b’‘, returncode=0, pid=1234, poll_count=3)
Set the behaviour of this mock when it is used to simulate commands that have no explicit behavior
specified using set_command().

Parameters

• stdout – A string representing the simulated content written by the process to the stdout
pipe.

• stderr – A string representing the simulated content written by the process to the stderr
pipe.

• returncode – An integer representing the return code of the simulated process.

• pid – An integer representing the process identifier of the simulated process. This is
useful if you have code the prints out the pids of running processes.

• poll_count – Specifies the number of times MockPopen.poll() can be called be-
fore MockPopen.returncode is set and returned by MockPopen.poll().

terminate()
Simulate calls to subprocess.Popen.terminate()

wait()
Simulate calls to subprocess.Popen.wait()

For details of how to install the package or get involved in its development, please see the sections below:

84 Chapter 12. API Reference

http://docs.python.org/library/subprocess.html#subprocess.Popen.kill
http://docs.python.org/library/subprocess.html#subprocess.Popen.poll
http://docs.python.org/library/subprocess.html#subprocess.Popen.send_signal
http://docs.python.org/library/subprocess.html#subprocess.Popen.terminate
http://docs.python.org/library/subprocess.html#subprocess.Popen.wait

CHAPTER 13

Installation Instructions

If you want to experiment with TestFixtures, the easiest way to install it is to do the following in a virtualenv:

pip install testfixtures

If your package uses setuptools and you decide to use TestFixtures, then you should do one of the following:

• Specify testfixtures in the tests_require parameter of your package’s call to setup in setup.py.

• Add an extra_requires parameter in your call to setup as follows:

setup(
other stuff here
extras_require=dict(

test=['testfixtures'],
)

)

Python version requirements

This package has been tested with Python 2.6, 2.7, 3.2 to 3.4 on Linux, Mac OS X and Windows.

85

testfixtures Documentation, Release 4.13.0

86 Chapter 13. Installation Instructions

CHAPTER 14

Development

This package is developed using continuous integration which can be found here:

https://travis-ci.org/Simplistix/testfixtures

The latest development version of the documentation can be found here:

http://testfixtures.readthedocs.org/en/latest/

If you wish to contribute to this project, then you should fork the repository found here:

https://github.com/Simplistix/testfixtures/

Once that has been done and you have a checkout, you can follow these instructions to perform various development
tasks:

14.1 Setting up a virtualenv

The recommended way to set up a development environment is to turn your checkout into a virtualenv and then install
the package in editable form as follows:

$ virtualenv .
$ bin/pip install -U -e .[test,build]

14.2 Running the tests

Once you’ve set up a virtualenv, the tests can be run as follows:

$ bin/nosetests

14.3 Building the documentation

The Sphinx documentation is built by doing the following from the directory containing setup.py:

$ source bin/activate
$ cd docs
$ make html

To check that the description that will be used on PyPI renders properly, do the following:

87

https://travis-ci.org/Simplistix/testfixtures
http://testfixtures.readthedocs.org/en/latest/
https://github.com/Simplistix/testfixtures/

testfixtures Documentation, Release 4.13.0

$ python setup.py --long-description | rst2html.py > desc.html

The resulting desc.html should be checked by opening in a browser.

14.4 Making a release

To make a release, just update versions.txt, update the change log, tag it and push to
https://github.com/Simplistix/testfixtures and Travis CI should take care of the rest.

Once Travis CI is done, make sure to go to https://readthedocs.org/projects/testfixtures/versions/ and make sure the
new release is marked as an Active Version.

88 Chapter 14. Development

https://github.com/Simplistix/testfixtures
https://readthedocs.org/projects/testfixtures/versions/

CHAPTER 15

Changes

15.1 4.13.0 (2 November 2016)

• Add support to compare() for ignoring broken __eq__ implementations.

15.2 4.12.0 (18 October 2016)

• Add support for specifying a callable to extract rows from log records when using LogCapture.

• Add support for recursive comparison of log messages with LogCapture.

15.3 4.11.0 (12 October 2016)

• Allow the attributes returned in LogCapture.actual() rows to be specified.

• Allow a default to be specified for encoding in TempDirectory.read() and
TempDirectory.write().

15.4 4.10.1 (5 September 2016)

• Better docs for TempDirectory.compare().

• Remove the need for expected paths supplied to TempDirectory.compare() to be in sorted order.

• Document a good way of restoring stdout when in a debugger.

• Fix handling of trailing slashes in TempDirectory.compare().

Thanks to Maximilian Albert for the TempDirectory.compare() docs.

15.5 4.10.0 (17 May 2016)

• Fixed examples in documentation broken in 4.5.1.

• Add RangeComparison for comparing against values that fall in a range.

• Add set_default() to MockPopen.

89

testfixtures Documentation, Release 4.13.0

Thanks to Asaf Peleg for the RangeComparison implementation.

15.6 4.9.1 (19 February 2016)

• Fix for use with PyPy, broken since 4.8.0.

Thanks to Nicola Iarocci for the pull request to fix.

15.7 4.9.0 (18 February 2016)

• Added the suffix parameter to compare() to allow failure messages to include some additional context.

• Update package metadata to indicate Python 3.5 compatibility.

Thanks for Felix Yan for the metadata patch.

Thanks to Wim Glenn for the suffix patch.

15.8 4.8.0 (2 February 2016)

• Introduce a new Replace context manager and make Replacer callable. This gives more succinct and easy
to read mocking code.

• Add ShouldWarn and ShouldNotWarn context managers.

15.9 4.7.0 (10 December 2015)

• Add the ability to pass raises=False to compare() to just get and resulting message back rather than
having an exception raised.

15.10 4.6.0 (3 December 2015)

• Fix a bug that mean symlinked directories would never show up when using TempDirectory.compare()
and friends.

• Add the followlinks parameter to TempDirectory.compare() to indicate that symlinked or hard
linked directories should be recursed into when using recursive=True.

15.11 4.5.1 (23 November 2015)

• Switch from cStringIO to StringIO in OutputCapture to better handle unicode being written to stdout
or stderr.

Thanks to “tell-k” for the patch.

90 Chapter 15. Changes

testfixtures Documentation, Release 4.13.0

15.12 4.5.0 (13 November 2015)

• LogCapture, OutputCapture and TempDirectory now explicitly show what is expected versus actual
when reporting differences.

Thanks to Daniel Fortunov for the pull request.

15.13 4.4.0 (1 November 2015)

• Add support for labelling the arguments passed to compare().

• Allow expected and actual keyword parameters to be passed to compare().

• Fix TypeError: unorderable types when compare() found multiple differences in sets and dic-
tionaries on Python 3.

• Add official support for Python 3.5.

• Drop official support for Python 2.6.

Thanks to Daniel Fortunov for the initial ideas for explicit expected and actual support in compare().

15.14 4.3.3 (15 September 2015)

• Add wheel distribution to release.

• Attempt to fix up various niggles from the move to Travis CI for doing releases.

15.15 4.3.2 (15 September 2015)

• Fix broken 4.3.1 tag.

15.16 4.3.1 (15 September 2015)

• Fix build problems introduced by moving the build process to Travis CI.

15.17 4.3.0 (15 September 2015)

• Add TempDirectory.compare() with a cleaner, more explicit API that allows comparison of only the
files in a temporary directory.

• Deprecate TempDirectory.check(), TempDirectory.check_dir() and
TempDirectory.check_all()

• Relax absolute-path rules so that if it’s inside the TempDirectory , it’s allowed.

• Allow OutputCapture to separately check output to stdout and stderr.

15.12. 4.5.0 (13 November 2015) 91

testfixtures Documentation, Release 4.13.0

15.18 4.2.0 (11 August 2015)

• Add MockPopen, a mock helpful when testing code that uses subprocess.Popen.

• ShouldRaise now subclasses object, so that subclasses of it may use super().

• Drop official support for Python 3.2.

Thanks to BATS Global Markets for donating the code for MockPopen.

15.19 4.1.2 (30 January 2015)

• Clarify documentation for name parameter to LogCapture.

• ShouldRaise now shows different output when two exceptions have the same representation but still differ.

• Fix bug that could result in a dict comparing equal to a list.

Thanks to Daniel Fortunov for the documentation clarification.

15.20 4.1.1 (30 October 2014)

• Fix bug that prevented logger propagation to be controlled by the log_capture decorator.

Thanks to John Kristensen for the fix.

15.21 4.1.0 (14 October 2014)

• Fix compare() bug when dict instances with tuple keys were not equal.

• Allow logger propagation to be controlled by LogCapture.

• Enabled disabled loggers if a LogCapture is attached to them.

Thanks to Daniel Fortunov for the compare() fix.

15.22 4.0.2 (10 September 2014)

• Fix “maximum recursion depth exceeded” when comparing a string with bytes that did not contain the same
character.

15.23 4.0.1 (4 August 2014)

• Fix bugs when string compared equal and options to compare() were used.

• Fix bug when strictly comparing two nested structures containing identical objects.

92 Chapter 15. Changes

http://docs.python.org/library/subprocess.html#subprocess.Popen
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/stdtypes.html#dict

testfixtures Documentation, Release 4.13.0

15.24 4.0.0 (22 July 2014)

• Moved from buildout to virtualenv for development.

• The identity singleton is no longer needed and has been removed.

• compare() will now work recursively on data structures for which it has registered comparers, giving more
detailed feedback on nested data structures. Strict comparison will also be applied recursively.

• Re-work the interfaces for using custom comparers with compare().

• Better feedback when comparing collections.namedtuple() instances.

• Official support for Python 3.4.

Thanks to Yevgen Kovalienia for the typo fix in Mocking dates and times.

15.25 3.1.0 (25 May 2014)

• Added RoundComparison helper for comparing numerics to a specific precision.

• Added unless parameter to ShouldRaise to cover some very specific edge cases.

• Fix missing imports that showed up TempDirectory had to do the “convoluted folder delete” dance on
Windows.

Thanks to Jon Thompson for the RoundComparison implementation.

Thanks to Matthias Lehmann for the import error reports.

15.26 3.0.2 (7 April 2014)

• Document ShouldRaise.raised and make it part of the official API.

• Fix rare failures when cleaning up TempDirectory instances on Windows.

15.27 3.0.1 (10 June 2013)

• Some documentation tweaks and clarifications.

• Fixed a bug which masked exceptions when using compare() with a broken generator.

• Fixed a bug when comparing a generator with a non-generator.

• Ensure LogCapture cleans up global state it may effect.

• Fixed replacement of static methods using a Replacer.

15.28 3.0.0 (5 March 2013)

• Added compatibility with Python 3.2 and 3.3.

• Dropped compatibility with Python 2.5.

• Removed support for the following obscure uses of should_raise:

15.24. 4.0.0 (22 July 2014) 93

http://docs.python.org/library/collections.html#collections.namedtuple

testfixtures Documentation, Release 4.13.0

should_raise(x, IndexError)[1]
should_raise(x, KeyError)['x']

• Dropped the mode parameter to TempDirectory.read().

• TempDirectory.makedir() and TempDirectory.write() no longer accept a path parameter.

• TempDirectory.read() and TempDirectory.write() now accept an encoding parameter to control
how non-byte data is decoded and encoded respectively.

• Added the prefix parameter to compare() to allow failure messages to be made more informative.

• Fixed a problem when using sub-second deltas with test_time().

15.29 2.3.5 (13 August 2012)

• Fixed a bug in compare_dict() that mean the list of keys that were the same was returned in an unsorted
order.

15.30 2.3.4 (31 January 2012)

• Fixed compatibility with Python 2.5

• Fixed compatibility with Python 2.7

• Development model moved to continuous integration using Jenkins.

• Introduced Tox based testing to ensure packaging and dependencies are as expected.

• 100% line and branch coverage with tests.

• Mark test_datetime, test_date and test_time such that nose doesn’t mistake them as tests.

15.31 2.3.3 (12 December 2011)

• Fixed a bug where when a target was replaced more than once using a single Replacer, restore() would
not correctly restore the original.

15.32 2.3.2 (10 November 2011)

• Fixed a bug where attributes and keys could not be removed by a Replacer as described in Removing at-
tributes and dictionary items if the attribute or key might not be there, such as where a test wants to ensure an
os.environ variable is not set.

15.33 2.3.1 (8 November 2011)

• Move to use nose for running the TestFixtures unit tests.

• Fixed a bug where tdatetime.now() returned an instance of the wrong type when tzinfo was passed in
strict mode.

94 Chapter 15. Changes

http://tox.testrun.org/latest/
http://readthedocs.org/docs/nose/

testfixtures Documentation, Release 4.13.0

15.34 2.3.0 (11 October 2011)

• Replacer, TempDirectory , LogCapture and TestComponents instances will now warn if the pro-
cess they are created in exits without them being cleaned up. Instances of these classes should be cleaned up at
the end of each test and these warnings serve to point to a cause for possible mysterious failures elsewhere.

15.35 2.2.0 (4 October 2011)

• Add a strict mode to test_datetime and test_date. When used, instances returned from the mocks are
instances of those mocks. The default behaviour is now to return instances of the real datetime and date
classes instead, which is usually much more useful.

15.36 2.1.0 (29 September 2011)

• Add a strict mode to compare(). When used, it ensures that the values compared are not only equal but also
of the same type. This mode is not used by default, and the default mode restores the more commonly useful
functionality where values of similar types but that aren’t equal give useful feedback about differences.

15.37 2.0.1 (23 September 2011)

• add back functionality to allow comparison of generators with non-generators.

15.38 2.0.0 (23 September 2011)

• compare() now uses a registry of comparers that can be modified either by passing a registry option to
compare() or, globally, using the register() function.

• added a comparer for set instances to compare().

• added a new show_whitespace parameter to compare_text(), the comparer used when comparing strings
and unicodes with compare().

• The internal queue for test_datetime is now considered to be in local time. This has implication on the
values returned from both now() and utcnow() when tzinfo is passed to the test_datetime constructor.

• set() and add() on test_date, test_datetime and test_time now accept instances of the appro-
priate type as an alternative to just passing in the parameters to create the instance.

• Refactored the monolithic __init__.py into modules for each type of functionality.

15.39 1.12.0 (16 August 2011)

• Add a captured property to OutputCapture so that more complex assertion can be made about the output
that has been captured.

• OutputCapture context managers can now be temporarily disabled using their disable() method.

• Logging can now be captured only when it exceeds a specified logging level.

15.34. 2.3.0 (11 October 2011) 95

http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/stdtypes.html#set

testfixtures Documentation, Release 4.13.0

• The handling of timezones has been reworked in both test_datetime() and test_time(). This is not
backwards compatible but is much more useful and correct.

15.40 1.11.3 (3 August 2011)

• Fix bugs where various test_date(), test_datetime() and test_time() methods didn’t accept
keyword parameters.

15.41 1.11.2 (28 July 2011)

• Fix for 1.10 and 1.11 releases that didn’t include non-.py files as a result of the move from subversion to git.

15.42 1.11.1 (28 July 2011)

• Fix bug where tdatetime.now() didn’t accept the tz parameter that datetime.datetime.now() did.

15.43 1.11.0 (27 July 2011)

• Give more useful output when comparing dicts and their subclasses.

• Turn should_raise into a decorator form of ShouldRaise rather than the rather out-moded wrapper
function that it was.

15.44 1.10.0 (19 July 2011)

• Remove dependency on zope.dottedname.

• Implement the ability to mock out dict and list items using Replacer and replace().

• Implement the ability to remove attributes and dict items using Replacer and replace().

15.45 1.9.2 (20 April 2011)

• Fix for issue #328: utcnow() of test_datetime() now returns items from the internal queue in the same
way as now().

15.46 1.9.1 (11 March 2011)

• Fix bug when ShouldRaise context managers incorrectly reported what exception was incorrectly raised
when the incorrectly raised exception was a KeyError.

96 Chapter 15. Changes

http://docs.python.org/library/datetime.html#datetime.datetime.now
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/stdtypes.html#dict

testfixtures Documentation, Release 4.13.0

15.47 1.9.0 (11 February 2011)

• Added TestComponents for getting a sterile registry when testing code that uses zope.component.

15.48 1.8.0 (14 January 2011)

• Added full Sphinx-based documentation.

• added a Manuel plugin for reading and writing files into a TempDirectory .

• any existing log handlers present when a LogCapture is installed for a particular logger are now removed.

• fix the semantics of should_raise, which should always expect an exception to be raised!

• added the ShouldRaise context manager.

• added recursive support to TempDirectory.listdir() and added the new
TempDirectory.check_all() method.

• added support for forward-slash separated paths to all relevant TempDirectory methods.

• added TempDirectory.getpath() method.

• allow files and directories to be ignored by a regular expression specification when using TempDirectory .

• made Comparison objects work when the attributes expected might be class attributes.

• re-implement test_time() so that it uses the correct way to get timezone-less time.

• added set() along with delta and delta_type parameters to test_date(), test_datetime() and
test_time().

• allow the date class returned by the tdatetime.date() method to be configured.

• added the OutputCapture context manager.

• added the StringComparison class.

• added options to ignore trailing whitespace and blank lines when comparing multi-line strings with
compare().

• fixed bugs in the handling of some exception types when using Comparison, ShouldRaise or
should_raise.

• changed wrap() to correctly set __name__, along with some other attributes, which should help when using
the decorators with certain testing frameworks.

15.49 1.7.0 (20 January 2010)

• fixed a bug where the @replace decorator passed a classmethod rather than the replacment to the decorated
callable when replacing a classmethod

• added set method to test_date, test_datetime and test_time to allow setting the parameters for the next instance
to be returned.

• added delta and delta_type parameters to test_date,test_datetime and test_time to control the intervals between
returned instances.

15.47. 1.9.0 (11 February 2011) 97

http://packages.python.org/manuel/

testfixtures Documentation, Release 4.13.0

15.50 1.6.2 (23 September 2009)

• changed Comparison to use __eq__ and __ne__ instead of the deprecated __cmp__

• documented that order matters when using Comparisons with objects that implement __eq__ themselves, such
as instances of Django models.

15.51 1.6.1 (06 September 2009)

• @replace and Replacer.replace can now replace attributes that may not be present, provided the strict parameter
is passed as False.

• should_raise now catches BaseException rather than Exception so raising of SystemExit and KeyboardInterrupt
can be tested.

15.52 1.6.0 (09 May 2009)

• added support for using TempDirectory, Replacer and LogCapture as context managers.

• fixed test failure in Python 2.6.

15.53 1.5.4 (11 Feb 2009)

• fix bug where should_raise didn’t complain when no exception was raised but one was expected.

• clarified that the return of a should_raise call will be None in the event that an exception is raised but no expected
exception is specified.

15.54 1.5.3 (17 Dec 2008)

• should_raise now supports methods other than __call__

15.55 1.5.2 (14 Dec 2008)

• added makedir and check_dir methods to TempDirectory and added support for sub directories to read and write

15.56 1.5.1 (12 Dec 2008)

• added path parameter to write method of TempDirectory so that the full path of the file written can be easilly
obtained

98 Chapter 15. Changes

testfixtures Documentation, Release 4.13.0

15.57 1.5.0 (12 Dec 2008)

• added handy read and write methods to TempDirectory for creating and reading files in the temporary directory

• added support for rich comparison of objects that don’t support vars()

15.58 1.4.0 (12 Dec 2008)

• improved representation of failed Comparison

• improved representation of failed compare with sequences

15.59 1.3.1 (10 Dec 2008)

• fixed bug that occurs when directory was deleted by a test that use tempdir or TempDirectory

15.60 1.3.0 (9 Dec 2008)

• added TempDirectory helper

• added tempdir decorator

15.61 1.2.0 (3 Dec 2008)

• LogCaptures now auto-install on creation unless configured otherwise

• LogCaptures now have a clear method

• LogCaptures now have a class method uninstall_all that uninstalls all instances of LogCapture. Handy for a
tearDown method in doctests.

15.62 1.1.0 (3 Dec 2008)

• add support to Comparisons for only comparing some attributes

• move to use zope.dottedname

15.63 1.0.0 (26 Nov 2008)

• Initial Release

15.57. 1.5.0 (12 Dec 2008) 99

testfixtures Documentation, Release 4.13.0

100 Chapter 15. Changes

CHAPTER 16

License

Copyright (c) 2008-2015 Simplistix Ltd Copyright (c) 2015-2016 Chris Withers

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

101

testfixtures Documentation, Release 4.13.0

102 Chapter 16. License

CHAPTER 17

Indices and tables

• genindex

• modindex

• search

103

testfixtures Documentation, Release 4.13.0

104 Chapter 17. Indices and tables

Index

A
add() (testfixtures.tdate method), 81
add() (testfixtures.tdatetime method), 82
add() (testfixtures.ttime method), 83

C
captured (testfixtures.OutputCapture attribute), 74
check() (testfixtures.LogCapture method), 73
check() (testfixtures.TempDirectory method), 76
check_all() (testfixtures.TempDirectory method), 76
check_dir() (testfixtures.TempDirectory method), 77
cleanup() (testfixtures.TempDirectory method), 77
cleanup_all() (testfixtures.TempDirectory class method),

77
clear() (testfixtures.LogCapture method), 74
communicate() (testfixtures.popen.MockPopen method),

83
compare() (in module testfixtures), 79
compare() (testfixtures.OutputCapture method), 74
compare() (testfixtures.TempDirectory method), 77
compare_dict() (in module testfixtures.comparison), 80
compare_generator() (in module testfixtures.comparison),

80
compare_sequence() (in module testfixtures.comparison),

80
compare_set() (in module testfixtures.comparison), 80
compare_simple() (in module testfixtures.comparison),

79
compare_text() (in module testfixtures.comparison), 80
compare_tuple() (in module testfixtures.comparison), 80
compare_with_type() (in module testfix-

tures.comparison), 80
Comparison (class in testfixtures), 73
create() (testfixtures.TempDirectory method), 78

D
date() (testfixtures.tdatetime class method), 83
diff() (in module testfixtures), 80
disable() (testfixtures.OutputCapture method), 74

E
enable() (testfixtures.OutputCapture method), 74

G
generator() (in module testfixtures), 80
getpath() (testfixtures.TempDirectory method), 78

I
install() (testfixtures.LogCapture method), 74

K
kill() (testfixtures.popen.MockPopen method), 83

L
listdir() (testfixtures.TempDirectory method), 78
log_capture() (in module testfixtures), 80
LogCapture (class in testfixtures), 73

M
makedir() (testfixtures.TempDirectory method), 78
MockPopen (class in testfixtures.popen), 83

N
not_there (in module testfixtures), 83
now() (testfixtures.tdatetime class method), 82

O
OutputCapture (class in testfixtures), 74

P
path (testfixtures.TempDirectory attribute), 78
poll() (testfixtures.popen.MockPopen method), 84

R
raised (testfixtures.ShouldRaise attribute), 76
RangeComparison (class in testfixtures), 75
read() (testfixtures.TempDirectory method), 78
register() (in module testfixtures.comparison), 79
Replace (class in testfixtures), 74

105

testfixtures Documentation, Release 4.13.0

replace() (in module testfixtures), 75
replace() (testfixtures.Replacer method), 75
Replacer (class in testfixtures), 75
restore() (testfixtures.Replacer method), 75
RoundComparison (class in testfixtures), 75

S
send_signal() (testfixtures.popen.MockPopen method),

84
set() (testfixtures.tdate method), 81
set() (testfixtures.tdatetime method), 82
set() (testfixtures.ttime method), 83
set_command() (testfixtures.popen.MockPopen method),

84
set_default() (testfixtures.popen.MockPopen method), 84
should_raise (class in testfixtures), 80
ShouldNotWarn (class in testfixtures), 76
ShouldRaise (class in testfixtures), 75
ShouldWarn (class in testfixtures), 76
StringComparison (class in testfixtures), 76

T
tempdir() (in module testfixtures), 81
TempDirectory (class in testfixtures), 76
terminate() (testfixtures.popen.MockPopen method), 84
test_date() (in module testfixtures), 81
test_datetime() (in module testfixtures), 81
test_time() (in module testfixtures), 83
today() (testfixtures.tdate class method), 81

U
uninstall() (testfixtures.LogCapture method), 74
uninstall_all() (testfixtures.LogCapture class method), 74
utcnow() (testfixtures.tdatetime class method), 82

W
wait() (testfixtures.popen.MockPopen method), 84
wrap() (in module testfixtures), 83
write() (testfixtures.TempDirectory method), 79

106 Index

	Comparing objects and sequences
	Mocking out objects and methods
	Mocking dates and times
	Testing logging
	Testing output to streams
	Testing with files and directories
	Testing exceptions
	Testing warnings
	Testing use of the subprocess package
	Testing with zope.component
	Utilities
	API Reference
	Installation Instructions
	Development
	Changes
	License
	Indices and tables

