

 Navigation

 	
 index

 	
 next |

 	testfixtures 4.12.0 documentation

TestFixtures documentation

TestFixtures is a collection of helpers and mock objects that are
useful when writing unit tests or doc tests.

The sections below describe the use of the various tools included:

	Comparing objects and sequences

	Mocking out objects and methods

	Mocking dates and times

	Testing logging

	Testing output to streams

	Testing with files and directories

	Testing exceptions

	Testing warnings

	Testing use of the subprocess package

	Testing with zope.component

	Utilities

If you’re looking for a description of a particular tool, please see
the API reference:

	API Reference

For details of how to install the package or get involved in its
development, please see the sections below:

	Installation Instructions

	Development

	Changes

	License

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Comparing objects and sequences

Python’s unittest [http://docs.python.org/library/unittest.html#module-unittest] package often fails to give very useful
feedback when comparing long sequences or chunks of text. It also has
trouble dealing with objects that don’t natively support
comparison. The functions and classes described here alleviate these
problems.

The compare function

The compare() function can be used as a replacement for
assertEqual() [http://docs.python.org/library/unittest.html#unittest.TestCase.assertEqual]. It raises an
AssertionError when its parameters are not equal, which will be
reported as a test failure:

>>> from testfixtures import compare
>>> compare(1, 2)
Traceback (most recent call last):
 ...
AssertionError: 1 != 2

However, it allows you to specify a prefix for the message to be used
in the event of failure:

>>> compare(1, 2, prefix='wrong number of orders')
Traceback (most recent call last):
 ...
AssertionError: wrong number of orders: 1 != 2

This is recommended as it makes the reason for the failure more
apparent without having to delve into the code or tests.

You can also optionally specify a suffix, which will be appended to the
message on a new line:

>>> compare(1, 2, suffix='(Except for very large values of 1)')
Traceback (most recent call last):
 ...
AssertionError: 1 != 2
(Except for very large values of 1)

The expected and actual value can also be explicitly supplied, making it
clearer as to what has gone wrong:

>>> compare(expected=1, actual=2)
Traceback (most recent call last):
 ...
AssertionError: 1 (expected) != 2 (actual)

The real strengths of this function come when comparing more complex
data types. A number of common python data types will give more
detailed output when a comparison fails as described below:

sets

Comparing sets that aren’t the same will attempt to
highlight where the differences lie:

>>> compare(set([1, 2]), set([2, 3]))
Traceback (most recent call last):
 ...
AssertionError: set not as expected:

in first but not second:
[1]

in second but not first:
[3]

dicts

Comparing dictionaries that aren’t the same will attempt to
highlight where the differences lie:

>>> compare(dict(x=1, y=2, a=4), dict(x=1, z=3, a=5))
Traceback (most recent call last):
 ...
AssertionError: dict not as expected:

same:
['x']

in first but not second:
'y': 2

in second but not first:
'z': 3

values differ:
'a': 4 != 5

lists and tuples

Comparing lists or tuples that aren’t the same will attempt to highlight
where the differences lie:

>>> compare([1, 2, 3], [1, 2, 4])
Traceback (most recent call last):
 ...
AssertionError: sequence not as expected:

same:
[1, 2]

first:
[3]

second:
[4]

namedtuples

When two namedtuple() [http://docs.python.org/library/collections.html#collections.namedtuple] instances are compared, if
they are of the same type, the description given will highlight which
elements were the same and which were different:

>>> from collections import namedtuple
>>> TestTuple = namedtuple('TestTuple', 'x y z')
>>> compare(TestTuple(1, 2, 3), TestTuple(1, 4, 3))
Traceback (most recent call last):
 ...
AssertionError: TestTuple not as expected:

same:
['x', 'z']

values differ:
'y': 2 != 4

generators

When two generators are compared, they are both first unwound into
tuples and those tuples are then compared.

The generator helper is useful for creating a
generator to represent the expected results:

>>> from testfixtures import generator
>>> def my_gen(t):
... i = 0
... while i<t:
... i += 1
... yield i
>>> compare(generator(1, 2, 3), my_gen(2))
Traceback (most recent call last):
 ...
AssertionError: sequence not as expected:

same:
(1, 2)

first:
(3,)

second:
()

Warning

If you wish to assert that a function returns a generator, say, for
performance reasons, then you should use
strict comparison.

strings and unicodes

Comparison of strings can be tricky, particularly when those strings
contain multiple lines; spotting the differences between the expected
and actual values can be hard.

To help with this, long strings give a more helpful representation
when comparison fails:

>>> compare("1234567891011", "1234567789")
Traceback (most recent call last):
 ...
AssertionError:
'1234567891011'
!=
'1234567789'

Likewise, multi-line strings give unified diffs when their comparison
fails:

>>> compare("""
... This is line 1
... This is line 2
... This is line 3
... """,
... """
... This is line 1
... This is another line
... This is line 3
... """)
Traceback (most recent call last):
 ...
AssertionError:
--- first
+++ second
@@ -1,5 +1,5 @@

 This is line 1
- This is line 2
+ This is another line
 This is line 3

Such comparisons can still be confusing as white space is taken into
account. If you need to care about whitespace characters, you can make
spotting the differences easier as follows:

>>> compare("\tline 1\r\nline 2"," line1 \nline 2", show_whitespace=True)
Traceback (most recent call last):
 ...
AssertionError:
--- first
+++ second
@@ -1,2 +1,2 @@
-'\tline 1\r\n'
+' line1 \n'
 'line 2'

However, you may not care about some of the whitespace involved. To
help with this, compare() has two options that can be set to
ignore certain types of whitespace.

If you wish to compare two strings that contain blank lines or lines
containing only whitespace characters, but where you only care about
the content, you can use the following:

compare('line1\nline2', 'line1\n \nline2\n\n',
 blanklines=False)

If you wish to compare two strings made up of lines that may have
trailing whitespace that you don’t care about, you can do so with the
following:

compare('line1\nline2', 'line1 \t\nline2 \n',
 trailing_whitespace=False)

Recursive comparison

Where compare() is able to provide a descriptive comparison for
a particular type, it will then recurse to do the same for the
elements contained within objects of that type.
For example, when comparing a list of dictionaries, the description
will not only tell you where in the list the difference occurred, but
also what the differences were within the dictionaries that weren’t
equal:

>>> compare([{'one': 1}, {'two': 2, 'text':'foo\nbar\nbaz'}],
... [{'one': 1}, {'two': 2, 'text':'foo\nbob\nbaz'}])
Traceback (most recent call last):
 ...
AssertionError: sequence not as expected:

same:
[{'one': 1}]

first:
[{'text': 'foo\nbar\nbaz', 'two': 2}]

second:
[{'text': 'foo\nbob\nbaz', 'two': 2}]

While comparing [1]: dict not as expected:

same:
['two']

values differ:
'text': 'foo\nbar\nbaz' != 'foo\nbob\nbaz'

While comparing [1]['text']:
--- first
+++ second
@@ -1,3 +1,3 @@
 foo
-bar
+bob
 baz

This also applies to any comparers you have provided, as can be seen
in the next section.

Providing your own comparers

When using compare() frequently for your own complex objects,
it can be beneficial to give more descriptive output when two objects
don’t compare as equal.

Note

If you are reading this section as a result of needing to test
objects that don’t natively support comparison, or as a result of
needing to infrequently compare your own subclasses of python
basic types, take a look at Comparison objects as this may
well be an easier solution.

As an example, suppose you have a class whose instances have a
timestamp and a name as attributes, but you’d like to ignore the
timestamp when comparing:

from datetime import datetime

class MyObject(object):
 def __init__(self, name):
 self.timestamp = datetime.now()
 self.name = name

To compare lots of these, you would first write a comparer:

def compare_my_object(x, y, context):
 if x.name == y.name:
 return
 return 'MyObject named %s != MyObject named %s' % (
 context.label('x', repr(x.name)),
 context.label('y', repr(y.name)),
)

Then you’d register that comparer for your type:

from testfixtures.comparison import register
register(MyObject, compare_my_object)

Now, it’ll get used when comparing objects of that type,
even if they’re contained within other objects:

>>> compare([1, MyObject('foo')], [1, MyObject('bar')])
Traceback (most recent call last):
 ...
AssertionError: sequence not as expected:

same:
[1]

first:
[<MyObject ...>]

second:
[<MyObject ...>]

While comparing [1]: MyObject named 'foo' != MyObject named 'bar'

From this example, you can also see that a comparer can indicate that
two objects are equal, for compare()‘s purposes, by returning
None:

>>> MyObject('foo') == MyObject('foo')
False
>>> compare(MyObject('foo'), MyObject('foo'))

You can also see that you can, and should, use the context object passed in
to add labels to the representations of the objects being compared if the
comparison fails:

>>> compare(expected=MyObject('foo'), actual=MyObject('bar'))
Traceback (most recent call last):
 ...
AssertionError: MyObject named 'foo' (expected) != MyObject named 'bar' (actual)

It may be that you only want to use a comparer or set of
comparers for a particular test. If that’s the case, you can pass
compare() a comparers parameter consisting of a
dictionary that maps types to comparers. These will be added to the
global registry for the duration of the call:

>>> compare(MyObject('foo'), MyObject('bar'),
... comparers={MyObject: compare_my_object})
Traceback (most recent call last):
 ...
AssertionError: MyObject named 'foo' != MyObject named 'bar'

A full list of the available comparers included can be found below the
API documentation for compare(). These make good candidates for
registering for your own classes, if they provide the necessary
behaviour, and their source is also good to read when wondering how to
implement your own comparers.

You may be wondering what the context object passed to the
comparer is for; it allows you to hand off comparison of parts of the
two objects currently being compared back to the compare()
machinery, it also allows you to pass options to your comparison
function.

For example, you may have an object that has a couple of dictionaries
as attributes:

from datetime import datetime

class Request(object):
 def __init__(self, uri, headers, body):
 self.uri = uri
 self.headers = headers
 self.body = body

When your tests encounter instances of these that are not as expected,
you want feedback about which bits of the request or response weren’t
as expected. This can be achieved by implementing a comparer as
follows:

def compare_request(x, y, context):
 uri_different = x.uri != y.uri
 headers_different = context.different(x.headers, y.headers, '.headers')
 body_different = context.different(x.body, y.body, '.body')
 if uri_different or headers_different or body_different:
 return 'Request for %r != Request for %r' % (
 x.uri, y.uri
)

Note

A comparer should always return some text when it considers
the two objects it is comparing to be different.

This comparer can either be registered globally or passed to each
compare() call and will give detailed feedback about how the
requests were different:

>>> compare(Request('/foo', {'method': 'POST'}, {'my_field': 'value_1'}),
... Request('/foo', {'method': 'GET'}, {'my_field': 'value_2'}),
... comparers={Request: compare_request})
Traceback (most recent call last):
 ...
AssertionError: Request for '/foo' != Request for '/foo'

While comparing .headers: dict not as expected:

values differ:
'method': 'POST' != 'GET'

While comparing .headers['method']: 'POST' != 'GET'

While comparing .body: dict not as expected:

values differ:
'my_field': 'value_1' != 'value_2'

While comparing .body['my_field']: 'value_1' != 'value_2'

As an example of passing options through to a comparer, suppose you
wanted to compare all decimals in a nested data structure by rounding
them to a number of decimal places that varies from test to test. The
comparer could be implemented and registered as follows:

from decimal import Decimal
from testfixtures.comparison import register

def compare_decimal(x, y, context):
 precision = context.get_option('precision', 2)
 if round(x, precision) != round(y, precision):
 return '%r != %r when rounded to %i decimal places' % (
 x, y, precision
)

register(Decimal, compare_decimal)

Now, this comparer will be used for comparing all decimals and the
precision used will be that passed to compare():

>>> expected_order = {'price': Decimal('1.234'), 'quantity': 5}
>>> actual_order = {'price': Decimal('1.236'), 'quantity': 5}
>>> compare(expected_order, actual_order, precision=1)
>>> compare(expected_order, actual_order, precision=3)
Traceback (most recent call last):
 ...
AssertionError: dict not as expected:

same:
['quantity']

values differ:
'price': Decimal('1.234') != Decimal('1.236')

While comparing ['price']: Decimal('1.234') != Decimal('1.236') when rounded to 3 decimal places

If no precision is passed, the default of 2 will be used:

>>> compare(Decimal('2.006'), Decimal('2.009'))
>>> compare(Decimal('2.001'), Decimal('2.009'))
Traceback (most recent call last):
 ...
AssertionError: Decimal('2.001') != Decimal('2.009') when rounded to 2 decimal places

Strict comparison

If is it important that the two values being compared are of exactly
the same type, rather than just being equal as far as Python is
concerned, then the strict mode of compare() should be used.

For example, these two instances will normally appear to be equal
provided the elements within them are the same:

>>> TypeA = namedtuple('A', 'x')
>>> TypeB = namedtuple('B', 'x')
>>> compare(TypeA(1), TypeB(1))

If this type difference is important, then the strict parameter
should be used:

>>> compare(TypeA(1), TypeB(1), strict=True)
Traceback (most recent call last):
 ...
AssertionError: A(x=1) (<class '__main__.A'>) != B(x=1) (<class '__main__.B'>)

Comparison objects

Another common problem with the checking in tests is that not all
objects support comparison and nor should they need to. For this
reason, TextFixtures provides the Comparison
class.

This class lets you instantiate placeholders that can be used to
compare expected results with actual results where objects in the
actual results do not support useful comparison.

Comparisons will appear to be equal to any object they are compared
with that matches their specification. For example, take the following
class:

class SomeClass:

 def __init__(self, x, y):
 self.x, self.y = x, y

Normal comparison doesn’t work, which makes testing tricky:

>>> SomeClass(1, 2) == SomeClass(1, 2)
False

Here’s how this comparison can be done:

>>> from testfixtures import Comparison as C
>>> C(SomeClass, x=1, y=2) == SomeClass(1, 2)
True

Perhaps even more importantly, when a comparison fails, its
representation changes to give information about what went wrong. The
common idiom for using comparisons is in conjuction with
assertEqual() [http://docs.python.org/library/unittest.html#unittest.TestCase.assertEqual] or
compare():

>>> compare(C(SomeClass, x=2), SomeClass(1, 2))
Traceback (most recent call last):
 ...
AssertionError:
 <C(failed):...SomeClass>
 x:2 != 1
 y:2 not in Comparison
 </C> != <...SomeClass...>

The key is that the comparison object actually stores information
about what it was last compared with. The following example shows this
more clearly:

>>> c = C(SomeClass, x=2)
>>> print(repr(c))

 <C:...SomeClass>
 x:2
 </C>
>>> c == SomeClass(1, 2)
False
>>> print(repr(c))

 <C(failed):...SomeClass>
 x:2 != 1
 y:2 not in Comparison
 </C>

Note

assertEqual() [http://docs.python.org/library/unittest.html#unittest.TestCase.assertEqual] has regressed in Python 3.4
and will now truncate the text shown in assertions with no way to
configure this behaviour. Use compare() instead, which will
give you other desirable behaviour as well as showing you the full
output of failed comparisons.

Types of comparison

There are several ways a comparison can be set up depending on what
you want to check.

If you only care about the class of an object, you can set up the
comparison with only the class:

>>> C(SomeClass) == SomeClass(1, 2)
True

This can also be achieved by specifying the type of the object as a
dotted name:

>>> import sys
>>> C('types.ModuleType') == sys
True

Alternatively, if you happen to have a non-comparable object already
around, comparison can be done with it:

>>> C(SomeClass(1,2)) == SomeClass(1,2)
True

If you only care about certain attributes, this can also easily be
achieved with the strict parameter:

>>> C(SomeClass, x=1, strict=False) == SomeClass(1, 2)
True

The above can be problematic if you want to compare an object with
attibutes that share names with parameters to the Comparison
constructor. For this reason, you can pass the attributes in a
dictionary:

>>> compare(C(SomeClass, {'strict':3}, strict=False), SomeClass(1, 2))
Traceback (most recent call last):
 ...
AssertionError:
 <C(failed):...SomeClass>
 strict:3 not in other
 </C> != <...SomeClass...>

Gotchas

There are a few things to be careful of when using comparisons:

	The default strict comparison cannot be used with a class such as
the following:

class NoVars(object):
 __slots__ = ['x']

If you try, you will get an error that explains the problem:

>>> C(NoVars, x=1) == NoVars()
Traceback (most recent call last):
 ...
TypeError: <NoVars object at ...> does not support vars() so cannot do strict comparison

Comparisons can still be done with classes that don’t support
vars(), they just need to be non-strict:

>>> nv = NoVars()
>>> nv.x = 1
>>> C(NoVars, x=1, strict=False) == nv
True

	If the object being compared has an __eq__ method, such as
Django model instances, then the Comparison
must be the first object in the equality check.

The following class is an example of this:

class SomeModel:
 def __eq__(self,other):
 if isinstance(other,SomeModel):
 return True
 return False

It will not work correctly if used as the second object in the
expression:

>>> SomeModel()==C(SomeModel)
False

However, if the comparison is correctly placed first, then
everything will behave as expected:

>>> C(SomeModel)==SomeModel()
True

	It probably goes without saying, but comparisons should not be used
on both sides of an equality check:

>>> C(SomeClass)==C(SomeClass)
False

Round Comparison objects

When comparing numerics you often want to be able to compare to a
given precision to allow for rounding issues which make precise
equality impossible.

For these situations, you can use RoundComparison objects
wherever you would use floats or Decimals, and they will compare equal to
any float or Decimal that matches when both sides are rounded to the
specified precision.

Here’s an example:

from testfixtures import compare, RoundComparison as R

compare(R(1234.5678, 2), 1234.5681)

Note

You should always pass the same type of object to the
RoundComparison object as you intend compare it with. If
the type of the rounded expected value is not the same as the type of
the rounded value being compared against it, a TypeError
will be raised.

Range Comparison objects

When comparing orderable types just as numbers, dates and time, you may only
know what range a value will fall into. RangeComparison objects
let you confirm a value is within a certain tolerance or range.

Here’s an example:

from testfixtures import compare, RangeComparison as R

compare(R(123.456, 789), Decimal(555.01))

Note

RangeComparison is inclusive of both the lower and upper bound.

String Comparison objects

When comparing sequences of strings, particularly those comping from
things like the python logging package, you often end up wanting to
express a requirement that one string should be almost like another,
or maybe fit a particular regular expression.

For these situations, you can use StringComparison objects
wherever you would use normal strings, and they will compare equal to
any string that matches the regular expression they are created with.

Here’s an example:

from testfixtures import compare, StringComparison as S

compare(S('Starting thread \d+'),'Starting thread 132356')

Differentiating chunks of text

TextFixtures provides a function that will compare two strings and
give a unified diff as a result. This can be handy as a third
parameter to assertEqual() [http://docs.python.org/library/unittest.html#unittest.TestCase.assertEqual] or just as a
general utility function for comparing two lumps of text.

As an example:

>>> from testfixtures import diff
>>> print(diff('line1\nline2\nline3',
... 'line1\nlineA\nline3'))
--- first
+++ second
@@ -1,3 +1,3 @@
 line1
-line2
+lineA
 line3

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Mocking out objects and methods

Mocking is the process of replacing chunks of complex functionality
that aren’t the subject of the test with mock objects that allow you
to check that the mocked out functionality is being used as expected.

In this way, you can break down testing of a complicated set of
interacting components into testing of each individual component.
The behaviour of components can then be tested individually,
irrespective of the behaviour of the components around it.

There are a few implementations of mock objects in the python world. An
excellent example and the one recommended for use with TestFixtures is
the Mock package: http://pypi.python.org/pypi/mock/

Methods of replacement

TestFixtures provides three different methods of mocking out
functionality that can be used to replace functions, classes
or even individual methods on a class. Consider the following module:

testfixtures.tests.sample1

class X:

 def y(self):
 return "original y"

 @classmethod
 def aMethod(cls):
 return cls

 @staticmethod
 def bMethod():
 return 2

We want to mock out the y method of the X class, with,
for example, the following function:

def mock_y(self):
 return 'mock y'

The context manager

For replacement of a single thing, it’s easiest to use the
Replace context manager:

from testfixtures import Replace

def test_function():
 with Replace('testfixtures.tests.sample1.X.y', mock_y):
 print(X().y())

For the duration of the with block, the replacement is used:

>>> test_function()
mock y

For multiple replacements to do, or where the you need access to the replacement
within the code block under test, the Replacer context
manager can be used instead:

from mock import Mock
from testfixtures import Replacer

def test_function():
 with Replacer() as replace:
 mock_y = replace('testfixtures.tests.sample1.X.y', Mock())
 mock_y.return_value = 'mock y'
 print(X().y())

For the duration of the with block, the replacement is used:

>>> test_function()
mock y

The decorator

If you are working in a traditional unittest [http://docs.python.org/library/unittest.html#module-unittest] environment and
want to replace different things in different test functions, you may
find the decorator suits your needs better:

from testfixtures import replace

@replace('testfixtures.tests.sample1.X.y', mock_y)
def test_function():
 print(X().y())

When using the decorator, the replacement is used for the duration of
the decorated callable’s execution:

>>> test_function()
mock y

If you need to manipulate or inspect the object that’s used as a
replacement, you can add an extra parameter to your function. The
decorator will see this and pass the replacement in it’s place:

from mock import Mock, call
from testfixtures import compare,replace

@replace('testfixtures.tests.sample1.X.y', Mock())
def test_function(mock_y):
 mock_y.return_value = 'mock y'
 print(X().y())
 compare(mock_y.mock_calls, expected=[call()])

The above still results in the same output:

>>> test_function()
mock y

Manual usage

If you want to replace something for the duration of a doctest or you
want to replace something for every test in a
TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase], then you can use the
Replacer manually.

The instantiation and replacement are done in the setUp function
of the TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase] or passed to the
DocTestSuite constructor:

>>> from testfixtures import Replacer
>>> replace = Replacer()
>>> replace('testfixtures.tests.sample1.X.y', mock_y)
<...>

The replacement then stays in place until removed:

>>> X().y()
'mock y'

Then, in the tearDown function
of the TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase] or passed to the
DocTestSuite constructor, the replacement is
removed:

>>> replace.restore()
>>> X().y()
'original y'

The restore() method can also be added as an
addCleanup() [http://docs.python.org/library/unittest.html#unittest.TestCase.addCleanup] if that is easier or more compact in your test
suite.

Replacing more than one thing

Both the Replacer and the
replace() decorator can be used to replace more
than one thing at a time. For the former, this is fairly obvious:

def test_function():
 with Replacer() as replace:
 y = replace('testfixtures.tests.sample1.X.y', Mock())
 y.return_value = 'mock y'
 aMethod = replace('testfixtures.tests.sample1.X.aMethod', Mock())
 aMethod.return_value = 'mock method'
 x = X()
 print(x.y(), x.aMethod())

For the decorator, it’s less obvious but still pretty easy:

from testfixtures import replace

@replace('testfixtures.tests.sample1.X.y', Mock())
@replace('testfixtures.tests.sample1.X.aMethod', Mock())
def test_function(aMethod, y):
 print(aMethod, y)
 aMethod().return_value = 'mock method'
 y().return_value = 'mock y'
 x = X()
 print(aMethod, y)
 print(x.y(), x.aMethod())

You’ll notice that you can still get access to the replacements, even
though there are several of them.

Replacing things that may not be there

The following code shows a situation where hpy may or may not be
present depending on whether the guppy package is installed or
not.

testfixtures.tests.sample2

try:
 from guppy import hpy
 guppy = True
except ImportError:
 guppy = False

def dump(path):
 if guppy:
 hpy().heap().stat.dump(path)

To test the behaviour of the code that uses hpy in both of
these cases, regardless of whether or not the guppy package is
actually installed, we need to be able to mock out both hpy and the
guppy global. This is done by doing non-strict replacement, as
shown in the following TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase]:

from testfixtures.tests.sample2 import dump
from testfixtures import replace
from mock import Mock, call

class Tests(unittest.TestCase):

 @replace('testfixtures.tests.sample2.guppy', True)
 @replace('testfixtures.tests.sample2.hpy', Mock(), strict=False)
 def test_method(self, hpy):

 dump('somepath')

 compare([
 call(),
 call().heap(),
 call().heap().stat.dump('somepath')
], hpy.mock_calls)

 @replace('testfixtures.tests.sample2.guppy', False)
 @replace('testfixtures.tests.sample2.hpy', Mock(), strict=False)
 def test_method_no_heapy(self,hpy):

 dump('somepath')

 compare(hpy.mock_calls,[])

The replace() method and calling
a Replacer also supports non-strict replacement using the same
keyword parameter.

Replacing items in dictionaries and lists

Replace, Replacer and the
replace() decorator can be used to replace items
in dictionaries and lists.

For example, suppose you have a data structure like the following:

testfixtures.tests.sample1

someDict = dict(
 key='value',
 complex_key=[1, 2, 3],
)

You can mock out the value associated with key and the second
element in the complex_key list as follows:

from pprint import pprint
from testfixtures import Replacer
from testfixtures.tests.sample1 import someDict

def test_function():
 with Replacer() as replace:
 replace('testfixtures.tests.sample1.someDict.key', 'foo')
 replace('testfixtures.tests.sample1.someDict.complex_key.1', 42)
 pprint(someDict)

While the replacement is in effect, the new items are in place:

>>> test_function()
{'complex_key': [1, 42, 3], 'key': 'foo'}

When it is no longer in effect, the originals are returned:

>>> pprint(someDict)
{'complex_key': [1, 2, 3], 'key': 'value'}

Removing attributes and dictionary items

Replace, Replacer and the
replace() decorator can be used to remove
attributes from objects and remove items from dictionaries.

For example, suppose you have a data structure like the following:

testfixtures.tests.sample1

someDict = dict(
 key='value',
 complex_key=[1, 2, 3],
)

If you want to remove the key for the duration of a test, you can
do so as follows:

from testfixtures import Replacer, not_there
from testfixtures.tests.sample1 import someDict

def test_function():
 with Replace('testfixtures.tests.sample1.someDict.key', not_there):
 pprint(someDict)

While the replacement is in effect, key is gone:

>>> test_function()
{'complex_key': [1, 2, 3]}

When it is no longer in effect, key is returned:

>>> pprint(someDict)
{'complex_key': [1, 2, 3], 'key': 'value'}

If you want the whole someDict dictionary to be removed for the
duration of a test, you would do so as follows:

from testfixtures import Replacer, not_there
from testfixtures.tests import sample1

def test_function():
 with Replace('testfixtures.tests.sample1.someDict', not_there):
 print(hasattr(sample1, 'someDict'))

While the replacement is in effect, key is gone:

>>> test_function()
False

When it is no longer in effect, key is returned:

>>> pprint(sample1.someDict)
{'complex_key': [1, 2, 3], 'key': 'value'}

Gotchas

	Make sure you replace the object where it’s used and not where it’s
defined. For example, with the following code from the
testfixtures.tests.sample1 package:

from time import time

def str_time():
 return str(time())

You might be tempted to mock things as follows:

>>> replace = Replacer()
>>> replace('time.time', Mock())
<...>

But this won’t work:

>>> from testfixtures.tests.sample1 import str_time
>>> type(float(str_time()))
<... 'float'>

You need to replace time() [http://docs.python.org/library/time.html#time.time] where it’s used, not where
it’s defined:

>>> replace('testfixtures.tests.sample1.time', Mock())
<...>
>>> str_time()
"<...Mock...>"

A corollary of this is that you need to replace all occurrences of
an original to safely be able to test. This can be tricky when an
original is imported into many modules that may be used by a
particular test.

	You can’t replace whole top level modules, and nor should you want
to! The reason being that everything up to the last dot in the
replacement target specifies where the replacement will take place,
and the part after the last dot is used as the name of the thing to
be replaced:

>>> Replacer().replace('sys', Mock())
Traceback (most recent call last):
 ...
ValueError: target must contain at least one dot!

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Mocking dates and times

Testing code that involves dates and times or which has behaviour
dependent on the date or time it is executed at has historically been
tricky. Mocking lets you perform tests on this type of code and
TestFixtures provides three specialised mock objects to help with
this.

Dates

TestFixtures provides the test_date() function
that returns a subclass of datetime.date [http://docs.python.org/library/datetime.html#datetime.date] with a
today() [http://docs.python.org/library/datetime.html#datetime.date.today] method that will return a
consistent sequence of dates each time it is called.

This enables you to write tests for code such as the following, from
the testfixtures.tests.sample1 package:

from datetime import datetime, date

def str_today_1():
 return str(date.today())

Replace can be used to apply the mock as
shown in the following example, which could appear in either a unit
test or a doc test:

>>> from testfixtures import Replace, test_date
>>> from testfixtures.tests.sample1 import str_today_1
>>> with Replace('testfixtures.tests.sample1.date', test_date()):
... str_today_1()
... str_today_1()
'2001-01-01'
'2001-01-02'

If you need a specific date to be returned, you can specify it:

>>> with Replace('testfixtures.tests.sample1.date', test_date(1978,6,13)):
... str_today_1()
'1978-06-13'

If you need to test with a whole sequence of specific dates, this
can be done as follows:

>>> with Replace('testfixtures.tests.sample1.date', test_date(None)) as d:
... d.add(1978,6,13)
... d.add(2009,11,12)
... str_today_1()
... str_today_1()
'1978-06-13'
'2009-11-12'

Another way to test with a specific sequence of dates is to use the
delta_type and delta parameters to
test_date(). These parameters control the type and
size, respectively, of the difference between each date returned.

For example, where 2 days elapse between each returned value:

>>> with Replace('testfixtures.tests.sample1.date',
... test_date(1978, 6, 13, delta=2, delta_type='days')) as d:
... str_today_1()
... str_today_1()
... str_today_1()
'1978-06-13'
'1978-06-15'
'1978-06-17'

The delta_type can be any keyword parameter accepted by the
timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta] constructor. Specifying a delta of
zero can be an effective way of ensuring that all calls to the
today() method return the same value:

>>> with Replace('testfixtures.tests.sample1.date',
... test_date(1978, 6, 13, delta=0)) as d:
... str_today_1()
... str_today_1()
... str_today_1()
'1978-06-13'
'1978-06-13'
'1978-06-13'

When using test_date(), you can, at any time, set
the next date to be returned using the
set() method. The date returned after
this will be the set date plus the delta in effect:

>>> with Replace('testfixtures.tests.sample1.date', test_date(delta=2)) as d:
... str_today_1()
... d.set(1978,8,1)
... str_today_1()
... str_today_1()
'2001-01-01'
'1978-08-01'
'1978-08-03'

Datetimes

TextFixtures provides the test_datetime()
function that returns a subclass of datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime] with
a now() [http://docs.python.org/library/datetime.html#datetime.datetime.now] method that will return a
consistent sequence of datetime [http://docs.python.org/library/datetime.html#datetime.datetime] objects each time
it is called.

This enables you to write tests for code such as the following, from
the testfixtures.tests.sample1 package:

from datetime import datetime, date

def str_now_1():
 return str(datetime.now())

We use the a Replacer as follows, which could
appear in either a unit test or a doc test:

>>> from testfixtures import Replacer, test_datetime
>>> from testfixtures.tests.sample1 import str_now_1
>>> with Replace('testfixtures.tests.sample1.datetime', test_datetime()):
... str_now_1()
... str_now_1()
'2001-01-01 00:00:00'
'2001-01-01 00:00:10'

If you need a specific datetime to be returned, you can specify it:

>>> with Replace('testfixtures.tests.sample1.datetime',
... test_datetime(1978,6,13,1,2,3)):
... str_now_1()
'1978-06-13 01:02:03'

If you need to test with a whole sequence of specific datetimes,
this can be done as follows:

>>> with Replace('testfixtures.tests.sample1.datetime',
... test_datetime(None)) as d:
... d.add(1978,6,13,16,0,1)
... d.add(2009,11,12,11,41,20)
... str_now_1()
... str_now_1()
'1978-06-13 16:00:01'
'2009-11-12 11:41:20'

Another way to test with a specific sequence of datetimes is to use the
delta_type and delta parameters to
test_datetime(). These parameters control the type and
size, respectively, of the difference between each datetime returned.

For example, where 2 hours elapse between each returned value:

>>> with Replace(
... 'testfixtures.tests.sample1.datetime',
... test_datetime(1978, 6, 13, 16, 0, 1, delta=2, delta_type='hours')
...) as d:
... str_now_1()
... str_now_1()
... str_now_1()
'1978-06-13 16:00:01'
'1978-06-13 18:00:01'
'1978-06-13 20:00:01'

The delta_type can be any keyword parameter accepted by the
timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta] constructor. Specifying a delta of
zero can be an effective way of ensuring that all calls to the
now() method return the same value:

>>> with Replace('testfixtures.tests.sample1.datetime',
... test_datetime(1978, 6, 13, 16, 0, 1, delta=0)) as d:
... str_now_1()
... str_now_1()
... str_now_1()
'1978-06-13 16:00:01'
'1978-06-13 16:00:01'
'1978-06-13 16:00:01'

When using test_datetime(), you can, at any time, set
the next datetime to be returned using the
set() method. The value returned after
this will be the set value plus the delta in effect:

>>> with Replace('testfixtures.tests.sample1.datetime',
... test_datetime(delta=2)) as d:
... str_now_1()
... d.set(1978,8,1)
... str_now_1()
... str_now_1()
'2001-01-01 00:00:00'
'1978-08-01 00:00:00'
'1978-08-01 00:00:02'

Timezones

In many situations where you’re mocking out
now() [http://docs.python.org/library/datetime.html#datetime.datetime.now] or utcnow() [http://docs.python.org/library/datetime.html#datetime.datetime.utcnow]
you’re not concerned about timezones, especially given that both
methods will usually return datetime [http://docs.python.org/library/datetime.html#datetime.datetime] objects that
have a tzinfo of None.
However, in some applications it is important that
now() [http://docs.python.org/library/datetime.html#datetime.datetime.now] and utcnow() [http://docs.python.org/library/datetime.html#datetime.datetime.utcnow]
return different times, as they would normally if the application is
run anywhere other than the UTC timezone.

The best way to understand how to use
test_datetime() in these situations is to think of
the internal queue as being a queue of datetime [http://docs.python.org/library/datetime.html#datetime.datetime]
objects at the current local time with a tzinfo of None, much as
would be returned by now() [http://docs.python.org/library/datetime.html#datetime.datetime.now].
If you pass in a tz parameter to
now() it will be applied to the value
before it is returned in the same way as it would by
datetime.datetime.now() [http://docs.python.org/library/datetime.html#datetime.datetime.now].

If you pass in a tzinfo to test_datetime(), this
will be taken to indicate the timezone you intend for the local times
that now() simulates.
As such, that timezone will be used to compute values returned from
utcnow() such that they would be test_datetime
objects in the UTC timezone with the tzinfo set to None, as
would be the case for a normal call to
datetime.datetime.utcnow() [http://docs.python.org/library/datetime.html#datetime.datetime.utcnow].

For example, lets take a timezone as defined by the following class:

from datetime import tzinfo, timedelta

class ATZInfo(tzinfo):

 def tzname(self, dt):
 return 'A TimeZone'

 def utcoffset(self, dt):
 # In general, this timezone is 5 hours behind UTC
 offset = timedelta(hours=-5)
 return offset+self.dst(dt)

 def dst(self, dt):
 # However, between March and September, it is only
 # 4 hours behind UTC
 if 3 < dt.month < 9:
 return timedelta(hours=1)
 return timedelta()

If we create a test_datetime with this
timezone and a delta of zero, so we can see affect of the timezone
over multiple calls, the values returned by
now() will be affected:

>>> datetime = test_datetime(2001, 1, 1, delta=0, tzinfo=ATZInfo())

A normal call to now() will return the values passed
to the constructor:

>>> print(datetime.now())
2001-01-01 00:00:00

If we now ask for this time but in the timezone we passed to
test_datetime, we will get the same hours,
minutes and seconds but with a tzinfo attribute set:

>>> print(datetime.now(ATZInfo()))
2001-01-01 00:00:00-05:00

If we call utcnow(), we will get the time equivalent
to the values passed to the constructor, but in the UTC timezone:

>>> print(datetime.utcnow())
2001-01-01 05:00:00

The timezone passed in when the test_datetime
is created has a similar effect on any items set:

>>> datetime.set(2011,5,1,10)
>>> print(datetime.now())
2011-05-01 10:00:00
>>> print(datetime.utcnow())
2011-05-01 14:00:00

Likewise, add() behaves the same way:

>>> datetime = test_datetime(None, delta=0, tzinfo=ATZInfo())
>>> datetime.add(2011,1,1,10)
>>> datetime.add(2011,5,1,10)
>>> datetime.add(2011,10,1,10)
>>> print(datetime.now())
2011-01-01 10:00:00
>>> print(datetime.utcnow())
2011-05-01 14:00:00
>>> print(datetime.now())
2011-10-01 10:00:00

Times

TextFixtures provides the test_time()
function that, when called, returns a replacement for the
time.time() [http://docs.python.org/library/time.html#time.time] function.

This enables you to write tests for code such as the following, from
the testfixtures.tests.sample1 package:

from time import time

def str_time():
 return str(time())

We use the a Replacer as follows, which could
appear in either a unit test or a doc test:

>>> from testfixtures import Replacer, test_time
>>> from testfixtures.tests.sample1 import str_time
>>> with Replace('testfixtures.tests.sample1.time', test_time()):
... str_time()
... str_time()
'978307200.0'
'978307201.0'

If you need an integer representing a specific time to be returned,
you can specify it:

>>> with Replace('testfixtures.tests.sample1.time',
... test_time(1978, 6, 13, 1, 2, 3)):
... str_time()
'266547723.0'

If you need to test with a whole sequence of specific timestamps,
this can be done as follows:

>>> with Replace('testfixtures.tests.sample1.time', test_time(None)) as t:
... t.add(1978,6,13,16,0,1)
... t.add(2009,11,12,11,41,20)
... str_time()
... str_time()
'266601601.0'
'1258026080.0'

Another way to test with a specific sequence of timestamps is to use the
delta_type and delta parameters to
test_time(). These parameters control the type and
size, respectively, of the difference between each timestamp returned.

For example, where 2 hours elapse between each returned value:

>>> with Replace(
... 'testfixtures.tests.sample1.time',
... test_time(1978, 6, 13, 16, 0, 1, delta=2, delta_type='hours')
...) as d:
... str_time()
... str_time()
... str_time()
'266601601.0'
'266608801.0'
'266616001.0'

The delta_type can be any keyword parameter accepted by the
timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta] constructor. Specifying a delta of
zero can be an effective way of ensuring that all calls to the
time() function return the same value:

>>> with Replace('testfixtures.tests.sample1.time',
... test_time(1978, 6, 13, 16, 0, 1, delta=0)) as d:
... str_time()
... str_time()
... str_time()
'266601601.0'
'266601601.0'
'266601601.0'

When using test_time(), you can, at any time, set
the next timestamp to be returned using the
set() method. The value returned after
this will be the set value plus the delta in effect:

>>> with Replace('testfixtures.tests.sample1.time', test_time(delta=2)) as d:
... str_time()
... d.set(1978,8,1)
... str_time()
... str_time()
'978307200.0'
'270777600.0'
'270777602.0'

Gotchas with dates and times

Using these specialised mock objects can have some intricacies as
described below:

Local references to functions

There are situations where people may have obtained a local
reference to the today() [http://docs.python.org/library/datetime.html#datetime.date.today] or
now() [http://docs.python.org/library/datetime.html#datetime.datetime.now] methods, such
as the following code from the testfixtures.tests.sample1 package:

from datetime import datetime, date

now = datetime.now

def str_now_2():
 return str(now())
today = date.today

def str_today_2():
 return str(today())

In these cases, you need to be careful with the replacement:

>>> from testfixtures import Replacer, test_datetime
>>> from testfixtures.tests.sample1 import str_now_2, str_today_2
>>> with Replacer() as replace:
... today = replace('testfixtures.tests.sample1.today', test_date().today)
... now = replace('testfixtures.tests.sample1.now', test_datetime().now)
... str_today_2()
... str_now_2()
'2001-01-01'
'2001-01-01 00:00:00'

Use with code that checks class types

When using the above specialist mocks, you may find code that checks
the type of parameters passed may get confused. This is because, by
default, test_datetime and test_date return
instances of the real datetime [http://docs.python.org/library/datetime.html#datetime.datetime] and
date [http://docs.python.org/library/datetime.html#datetime.date] classes:

>>> from testfixtures import test_datetime
>>> from datetime import datetime
>>> tdatetime = test_datetime()
>>> issubclass(tdatetime, datetime)
True
>>> tdatetime.now().__class__
<...'datetime.datetime'>

The above behaviour, however, is generally what you want as other code
in your application and, more importantly, in other code such as
database adapters, may handle instances of the real
datetime [http://docs.python.org/library/datetime.html#datetime.datetime] and date [http://docs.python.org/library/datetime.html#datetime.date] classes, but
not instances of the test_datetime and test_date
mocks.

That said, this behaviour can cause problems if you check the type of
an instance against one of the mock classes. Most people might expect
the following to return True:

>>> isinstance(tdatetime(2011, 1, 1), tdatetime)
False
>>> isinstance(tdatetime.now(), tdatetime)
False

If this causes a problem for you, then both
datetime [http://docs.python.org/library/datetime.html#datetime.datetime] and date [http://docs.python.org/library/datetime.html#datetime.date] take a
strict keyword parameter that can be used as follows:

>>> tdatetime = test_datetime(strict=True)
>>> tdatetime.now().__class__
<class 'testfixtures.tdatetime.tdatetime'>
>>> isinstance(tdatetime.now(), tdatetime)
True

You will need to take care that you have replaced occurrences of the
class where type checking is done with the correct
test_datetime or test_date.
Also, be aware that the date() method of
test_datetime instances will still return a normal
date [http://docs.python.org/library/datetime.html#datetime.date] instance. If type checking related to this is causing
problems, the type the date() method returns can
be controlled as shown in the following example:

from testfixtures import test_date, test_datetime

date_type = test_date(strict=True)
datetime_type = test_datetime(strict=True, date_type=date_type)

With things set up like this, the date() method
will return an instance of the date_type mock:

>>> somewhen = datetime_type.now()
>>> somewhen.date()
tdate(2001, 1, 1)
>>> _.__class__ is date_type
True

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Testing logging

Python includes an excellent logging [http://docs.python.org/library/logging.html#module-logging] package, however many
people assume that logging calls do not need to be tested. They may
also want to test logging calls but find the prospect too daunting.
To help with this, TestFixtures allows you to easily capture the
output of calls to Python’s logging framework and make sure they were
as expected.

Note

The LogCapture class is useful for checking that
your code logs the right messages. If you want to check that
the configuration of your handlers is correct, please see
the section below.

Methods of capture

There are three different techniques for capturing messages logged to
the Python logging framework, depending on the type of test you are
writing. They are all described in the sections below.

The context manager

If you’re using a version of Python where the with keyword is
available, the context manager provided by TestFixtures can be used:

>>> import logging
>>> from testfixtures import LogCapture
>>> with LogCapture() as l:
... logger = logging.getLogger()
... logger.info('a message')
... logger.error('an error')

For the duration of the with block, log messages are captured. The
context manager provides a check method that raises an exception if
the logging wasn’t as you expected:

>>> l.check(
... ('root', 'INFO', 'a message'),
... ('root', 'ERROR', 'another error'),
...)
Traceback (most recent call last):
 ...
AssertionError: sequence not as expected:

same:
(('root', 'INFO', 'a message'),)

expected:
(('root', 'ERROR', 'another error'),)

actual:
(('root', 'ERROR', 'an error'),)

It also has a string representation that allows you to see what has
been logged, which is useful for doc tests:

>>> print(l)
root INFO
 a message
root ERROR
 an error

The decorator

If you are working in a traditional unittest [http://docs.python.org/library/unittest.html#module-unittest] environment and
only want to capture logging for a particular test function, you may
find the decorator suits your needs better:

from testfixtures import log_capture

@log_capture()
def test_function(l):
 logger = logging.getLogger()
 logger.info('a message')
 logger.error('an error')

 l.check(
 ('root', 'INFO', 'a message'),
 ('root', 'ERROR', 'an error'),
)

Manual usage

If you want to capture logging for the duration of a doctest or
in every test in a TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase], then you can use the
LogCapture manually.

The instantiation and replacement are done in the setUp function
of the TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase] or passed to the
DocTestSuite constructor:

>>> from testfixtures import LogCapture
>>> l = LogCapture()

You can then execute whatever will log the messages you want to test
for:

>>> from logging import getLogger
>>> getLogger().info('a message')

At any point, you can check what has been logged using the
check method:

>>> l.check(('root', 'INFO', 'a message'))

Alternatively, you can use the string representation of the
LogCapture:

>>> print(l)
root INFO
 a message

Then, in the tearDown function
of the TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase] or passed to the
DocTestSuite constructor, you should make sure you
stop the capturing:

>>> l.uninstall()

If you have multiple LogCapture objects in use,
you can easily uninstall them all:

>>> LogCapture.uninstall_all()

Checking captured log messages

Regardless of how you use the LogCapture to
capture messages, there are three ways of checking that the messages
captured were as expected.

The following example is useful for showing these:

from testfixtures import LogCapture
from logging import getLogger
logger = getLogger()

with LogCapture() as l:
 logger.info('start of block number %i', 1)
 try:
 raise RuntimeError('No code to run!')
 except:
 logger.error('error occurred', exc_info=True)

The check method

The LogCapture has a
check() method that will compare the
log messages captured with those you expect. Expected messages are
expressed as three-element tuples where the first element is the name
of the logger to which the message should have been logged, the
second element is the string representation of the level at which the
message should have been logged and the third element is the message
that should have been logged after any parameter interpolation has
taken place.

If things are as you expected, the method will not raise any exceptions:

>>> result = l.check(
... ('root', 'INFO', 'start of block number 1'),
... ('root', 'ERROR', 'error occurred'),
...)

However, if the actual messages logged were different, you’ll get an
AssertionError [http://docs.python.org/library/exceptions.html#exceptions.AssertionError] explaining what happened:

>>> l.check(('root', 'INFO', 'start of block number 1'))
Traceback (most recent call last):
 ...
AssertionError: sequence not as expected:

same:
(('root', 'INFO', 'start of block number 1'),)

expected:
()

actual:
(('root', 'ERROR', 'error occurred'),)

Printing

The LogCapture has a string representation that
shows what messages it has captured. This can be useful in doc tests:

>>> print(l)
root INFO
 start of block number 1
root ERROR
 error occurred

This representation can also be used to check that no logging has
occurred:

>>> empty = LogCapture()
>>> print(empty)
No logging captured

Inspecting

The LogCapture also keeps a list of the
LogRecord [http://docs.python.org/library/logging.html#logging.LogRecord] instances it captures. This is useful when
you want to check specifics of the captured logging that aren’t
available from either the string representation or the
check() method.

A common case of this is where you want to check that exception
information was logged for certain messages:

>>> print(l.records[-1].exc_info)
(<... '...RuntimeError'>, RuntimeError('No code to run!',), <traceback object at ...>)

If you’re working in a unit test, the following code may be more
appropriate:

from testfixtures import compare, Comparison as C

compare(C(RuntimeError('No code to run!')), l.records[-1].exc_info[1])

Only capturing specific logging

Some actions that you want to test may generate a lot of logging, only
some of which you actually need to care about.

The logging you care about is often only that above a certain log
level. If this is the case, you can configure LogCapture to
only capture logging at or above a specific level.

If using the context manager, you would do this:

>>> with LogCapture(level=logging.INFO) as l:
... logger = getLogger()
... logger.debug('junk')
... logger.info('something we care about')
... logger.error('an error')
>>> print(l)
root INFO
 something we care about
root ERROR
 an error

If using the decorator, you would do this:

@log_capture(level=logging.INFO)
def test_function(l):
 logger= getLogger()
 logger.debug('junk')
 logger.info('what we care about')

 l.check(('root', 'INFO', 'what we care about'))

In other cases this problem can be alleviated by only capturing a
specific logger.

If using the context manager, you would do this:

>>> with LogCapture('specific') as l:
... getLogger('something').info('junk')
... getLogger('specific').info('what we care about')
... getLogger().info('more junk')
>>> print(l)
specific INFO
 what we care about

If using the decorator, you would do this:

@log_capture('specific')
def test_function(l):
 getLogger('something').info('junk')
 getLogger('specific').info('what we care about')
 getLogger().info('more junk')

 l.check(('specific', 'INFO', 'what we care about'))

However, it may be that while you don’t want to capture all logging,
you do want to capture logging from multiple specific loggers.

You would do this with the context manager as follows:

>>> with LogCapture(('one','two')) as l:
... getLogger('three').info('3')
... getLogger('two').info('2')
... getLogger('one').info('1')
>>> print(l)
two INFO
 2
one INFO
 1

Likewise, the same thing can be done with the decorator:

@log_capture('one','two')
def test_function(l):
 getLogger('three').info('3')
 getLogger('two').info('2')
 getLogger('one').info('1')

 l.check(
 ('two', 'INFO', '2'),
 ('one', 'INFO', '1')
)

It may also be that the simplest thing to do is only capture logging
for part of your test. This is particularly common with long doc
tests. To make this easier, LogCapture supports
manual installation and uninstallation as shown in the following
example:

>>> l = LogCapture(install=False)
>>> getLogger().info('junk')
>>> l.install()
>>> getLogger().info('something we care about')
>>> l.uninstall()
>>> getLogger().info('more junk')
>>> l.install()
>>> getLogger().info('something else we care about')
>>> print(l)
root INFO
 something we care about
root INFO
 something else we care about

Checking the configuration of your log handlers

LogCapture is good for checking that your code is logging the
correct messages; just as important is checking that your application
has correctly configured log handers. This can be done using a unit
test such as the following:

from testfixtures import Comparison as C, compare
from unittest import TestCase
import logging
import sys

class LoggingConfigurationTests(TestCase):

 # We mock out the handlers list for the logger we're
 # configuring in such a way that we have no handlers
 # configured at the start of the test and the handlers our
 # configuration installs are removed at the end of the test.

 def setUp(self):
 self.logger = logging.getLogger()
 self.orig_handlers = self.logger.handlers
 self.logger.handlers = []
 self.level = self.logger.level

 def tearDown(self):
 self.logger.handlers = self.orig_handlers
 self.logger.level = self.level

 def test_basic_configuration(self):
 # Our logging configuration code, in this case just a
 # call to basicConfig:
 logging.basicConfig(format='%(levelname)s %(message)s',
 level=logging.INFO)

 # Now we check the configuration is as expected:

 compare(self.logger.level, 20)
 compare([
 C('logging.StreamHandler',
 stream=sys.stderr,
 formatter=C('logging.Formatter',
 _fmt='%(levelname)s %(message)s',
 strict=False),
 level=logging.NOTSET,
 strict=False)
], self.logger.handlers)

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Testing output to streams

In many situations, it’s perfectly legitimate for output to be printed
to one of the standard streams. To aid with testing this kind of
output, TestFixtures provides the OutputCapture helper.

This helper is a context manager that captures output sent to
sys.stdout and sys.stderr and provides a
compare() method to check that the output was as
expected.

Here’s a simple example:

from testfixtures import OutputCapture
import sys

with OutputCapture() as output:
 # code under test
 print("Hello!")
 print("Something bad happened!", file=sys.stderr)

output.compare('\n'.join([
 "Hello!",
 "Something bad happened!",
]))

To make life easier, both the actual and expected output are stripped
of leading and trailing whitespace before the comparison is done:

>>> with OutputCapture() as o:
... print(' Bar! ')
... o.compare(' Foo! ')
Traceback (most recent call last):
...
AssertionError: 'Foo!' (expected) != 'Bar!' (actual)

However, if you need to make very explicit assertions about what has
been written to the stream then you can do so using the captured
property of the OutputCapture:

>>> with OutputCapture() as o:
... print(' Bar! ')
>>> print(repr(o.captured))
' Bar! \n'

If you need to explicitly check whether output went to stdout or stderr,
separate mode can be used:

from testfixtures import OutputCapture
import sys

with OutputCapture(separate=True) as output:
 print("Hello!")
 print("Something bad happened!", file=sys.stderr)

output.compare(
 stdout="Hello!",
 stderr="Something bad happened!",
)

Finally, you may sometimes want to disable an OutputCapture
without removing it from your code. This often happens when you want
to insert a debugger call while an OutputCapture is active;
if it remains enabled, all debugger output will be captured making the
debugger very difficult to use!

To deal with this problem, the OutputCapture may be disabled
and then re-enabled as follows:

>>> with OutputCapture() as o:
... print('Foo')
... o.disable()
... print('Bar')
... o.enable()
... print('Baz')
Bar
>>> print(o.captured)
Foo
Baz

Note

Some debuggers, notably pdb [http://docs.python.org/library/pdb.html#module-pdb], do interesting things with streams
such that calling disable() from within the debugger
will have no effect. A good fallback is to type the following, which will
almost always restore output to where you want it:

import sys; sys.stdout=sys.__stdout__

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Testing with files and directories

Working with files and directories in tests can often require
excessive amounts of boilerplate code to make sure that the tests
happen in their own sandbox, files and directories contain what they
should or code processes test files correctly, and the sandbox is
cleared up at the end of the tests.

Methods of use

To help with this, TestFixtures provides the
TempDirectory class that hides most of the
boilerplate code you would need to write.

Suppose you wanted to test the following function:

import os

def foo2bar(dirpath, filename):
 path = os.path.join(dirpath, filename)
 with open(path, 'rb') as input:
 data = input.read()
 data = data.replace(b'foo', b'bar')
 with open(path, 'wb') as output:
 output.write(data)

There are several different ways depending on the type of test you are
writing:

The context manager

If you’re using a version of Python where the with keyword is
available, a TempDirectory can be used as a
context manager:

>>> from testfixtures import TempDirectory
>>> with TempDirectory() as d:
... d.write('test.txt', b'some foo thing')
... foo2bar(d.path, 'test.txt')
... d.read('test.txt')
'...'
b'some bar thing'

The decorator

If you are working in a traditional unittest [http://docs.python.org/library/unittest.html#module-unittest] environment and
only work with files or directories in a particular test function, you
may find the decorator suits your needs better:

from testfixtures import tempdir, compare

@tempdir()
def test_function(d):
 d.write('test.txt', b'some foo thing')
 foo2bar(d.path, 'test.txt')
 compare(d.read('test.txt'), b'some bar thing')

Manual usage

If you want to work with files or directories for the duration of a
doctest or in every test in a TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase], then you
can use the TempDirectory manually.

The instantiation and replacement are done in the setUp function
of the TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase] or passed to the
DocTestSuite constructor:

>>> from testfixtures import TempDirectory
>>> d = TempDirectory()

You can then use the temporary directory for your testing:

>>> d.write('test.txt', b'some foo thing')
'...'
>>> foo2bar(d.path, 'test.txt')
>>> d.read('test.txt') == b'some bar thing'
True

Then, in the tearDown function
of the TestCase [http://docs.python.org/library/unittest.html#unittest.TestCase] or passed to the
DocTestSuite constructor, you should make sure the
temporary directory is cleaned up:

>>> d.cleanup()

If you have multiple TempDirectory objects in use,
you can easily clean them all up:

>>> TempDirectory.cleanup_all()

Features of a temporary directory

No matter which usage pattern you pick, you will always end up with a
TempDirectory object. These have an array of
methods that let you perform common file and directory related tasks
without all the manual boiler plate. The following sections show you
how to perform the various tasks you’re likely to bump into in the
course of testing.

Computing paths

If you need to know the real path of the temporary directory, the
TempDirectory object has a path
attribute:

>>> tempdir.path
'...tmp...'

A common use case is to want to compute a path within the temporary
directory to pass to code under test. This can be done with the
getpath() method:

>>> tempdir.getpath('foo').rsplit(os.sep,1)[-1]
'foo'

If you want to compute a deeper path, you can either pass either a
tuple or a forward slash-separated path:

>>> tempdir.getpath(('foo', 'baz')).rsplit(os.sep, 2)[-2:]
['foo', 'baz']
>>> tempdir.getpath('foo/baz') .rsplit(os.sep, 2)[-2:]
['foo', 'baz']

Note

If passing a string containing path separators, a forward
slash should be used as the separator regardless of the underlying
platform separator.

Writing files

To write to a file in the root of the temporary directory, you pass
the name of the file and the content you want to write:

>>> tempdir.write('myfile.txt', b'some text')
'...'
>>> with open(os.path.join(tempdir.path, 'myfile.txt')) as f:
... print(f.read())
some text

The full path of the newly written file is returned:

>>> path = tempdir.write('anotherfile.txt', b'some more text')
>>> with open(path) as f:
... print(f.read())
some more text

You can also write files into a sub-directory of the temporary
directory, whether or not that directory exists, as follows:

>>> path = tempdir.write(('some', 'folder', 'afile.txt'), b'the text')
>>> with open(path) as f:
... print(f.read())
the text

You can also specify the path to write to as a forward-slash separated
string:

>>> path = tempdir.write('some/folder/bfile.txt', b'the text')
>>> with open(path) as f:
... print(f.read())
the text

Note

Forward slashes should be used regardless of the file system or
operating system in use.

Creating directories

If you just want to create a sub-directory in the temporary directory
you can do so as follows:

>>> tempdir.makedir('output')
'...'
>>> os.path.isdir(os.path.join(tempdir.path, 'output'))
True

As with file creation, the full path of the sub-directory that has
just been created is returned:

>>> path = tempdir.makedir('more_output')
>>> os.path.isdir(path)
True

Finally, you can create a nested sub-directory even if the intervening
parent directories do not exist:

>>> os.path.exists(os.path.join(tempdir.path, 'some'))
False
>>> path = tempdir.makedir(('some', 'sub', 'dir'))
>>> os.path.exists(path)
True

You can also specify the path to write to as a forward-slash separated
string:

>>> os.path.exists(os.path.join(tempdir.path, 'another'))
False
>>> path = tempdir.makedir('another/sub/dir')
>>> os.path.exists(path)
True

Note

Forward slashes should be used regardless of the file system or
operating system in use.

Checking the contents of files

Once a file has been written into the temporary directory, you will
often want to check its contents. This is done with the
TempDirectory.read() method.

Suppose the code you are testing creates some files:

def spew(path):
 with open(os.path.join(path, 'root.txt'), 'wb') as f:
 f.write(b'root output')
 os.mkdir(os.path.join(path, 'subdir'))
 with open(os.path.join(path, 'subdir', 'file.txt'), 'wb') as f:
 f.write(b'subdir output')
 os.mkdir(os.path.join(path, 'subdir', 'logs'))

We can test this function by passing it the temporary directory’s path
and then using the TempDirectory.read() method to
check the files were created with the correct content:

>>> spew(tempdir.path)
>>> tempdir.read('root.txt')
b'root output'
>>> tempdir.read(('subdir', 'file.txt'))
b'subdir output'

The second part of the above test shows how to use the
TempDirectory.read() method to check the contents
of files that are in sub-directories of the temporary directory. This
can also be done by specifying the path relative to the root of
the temporary directory as a forward-slash separated string:

>>> tempdir.read('subdir/file.txt')
b'subdir output'

Note

Forward slashes should be used regardless of the file system or
operating system in use.

Checking the contents of directories

It’s good practice to test that your code is only writing files you expect it
to and to check they are being written to the path you expect.
TempDirectory.compare() is the method to use to do this.

As an example, we could check that the spew() function above created no
extraneous files as follows:

>>> tempdir.compare([
... 'root.txt',
... 'subdir/',
... 'subdir/file.txt',
... 'subdir/logs/',
...])

If we only wanted to check the sub-directory, we would specify the path to
start from, relative to the root of the temporary directory:

>>> tempdir.compare([
... 'file.txt',
... 'logs/',
...], path='subdir')

If, like git, we only cared about files, we could do the comparison as follows:

>>> tempdir.compare([
... 'root.txt',
... 'subdir/file.txt',
...], files_only=True)

And finally, if we only cared about files at a particular level, we could
turn off the recursive comparison as follows:

>>> tempdir.compare([
... 'root.txt',
... 'subdir',
...], recursive=False)

The compare() method can also be used to
check whether a directory contains nothing, for example:

>>> tempdir.compare(path=('subdir', 'logs'), expected=())

The above can also be done by specifying the sub-directory to be
checked as a forward-slash separated path:

>>> tempdir.compare(path='subdir/logs', expected=())

If the actual directory contents do not match the expected contents passed in,
an AssertionError [http://docs.python.org/library/exceptions.html#exceptions.AssertionError] is raised, which will show up as a
unit test failure:

>>> tempdir.compare(['subdir'], recursive=False)
Traceback (most recent call last):
...
AssertionError: sequence not as expected:

same:
()

expected:
('subdir',)

actual:
('root.txt', 'subdir')

In some circumstances, you may want to ignore certain files or
sub-directories when checking contents. To make this easy, the
TempDirectory constructor takes an optional
ignore parameter which, if provided, should contain a sequence of
regular expressions. If any of the regular expressions return a match
when used to search through the results of any of the the methods
covered in this section, that result will be ignored.

For example, suppose we are testing some revision control code, but
don’t really care about the revision control system’s metadata
directories, which may or may not be present:

from random import choice

def svn_ish(dirpath, filename):
 if choice((True, False)):
 os.mkdir(os.path.join(dirpath, '.svn'))
 with open(os.path.join(dirpath, filename), 'wb') as f:
 f.write(b'something')

To test this, we can use any of the previously described methods.

When used manually or as a context manager, this would be as follows:

>>> with TempDirectory(ignore=['.svn']) as d:
... svn_ish(d.path, 'test.txt')
... d.compare(['test.txt'])

The decorator would be as follows:

from testfixtures import tempdir, compare

@tempdir(ignore=['.svn'])
def test_function(d):
 svn_ish(d.path, 'test.txt')
 d.compare(['test.txt'])

If you are working with doctests, the
listdir() method can be used instead:

>>> tempdir.listdir()
root.txt
subdir
>>> tempdir.listdir('subdir')
file.txt
logs
>>> tempdir.listdir(('subdir', 'logs'))
No files or directories found.

The above example also shows how to check the contents of sub-directories of
the temporary directory and also shows what is printed when a
directory contains nothing. The
listdir() method can also take a
path separated by forward slashes, which can make doctests a little
more readable. The above test could be written as follows:

>>> tempdir.listdir('subdir/logs')
No files or directories found.

However, if you have a nested folder structure, such as that created by
our spew() function, it can be easier to just inspect the whole
tree of files and folders created. You can do this by using the
recursive parameter to listdir():

>>> tempdir.listdir(recursive=True)
root.txt
subdir/
subdir/file.txt
subdir/logs/

Bytes versus Strings

You’ll notice that all of the examples so far have used raw bytes as
their data and written to and read from files only in binary mode.
This keeps all the examples nice and simple and working consistently
between Python 2 and Python 3.
One of the big changes between Python 2 and Python 3 was that the
default string type became unicode instead of binary, and a new type
for bytes was introduced. This little snippet shows the difference by
defining two constants for the British Pound symbol:

import sys
PY3 = sys.version_info[:2] >= (3, 0)

if PY3:
 some_bytes = '\xa3'.encode('utf-8')
 some_text = '\xa3'
else:
 some_bytes = '\xc2\xa3'
 some_text = '\xc2\xa3'.decode('utf-8')

Python 3 is much stricter than Python 2 about the byte versus string
boundary and TempDirectory has been changed to help work
with this by only reading and writing files in binary mode and
providing parameters to control decoding and encoding when you want to read and
write text.

For example, when writing, you can either write bytes directly, as we
have been in the examples so far:

>>> path = tempdir.write('currencies.txt', some_bytes)
>>> with open(path, 'rb') as currencies:
... currencies.read()
b'\xc2\xa3'

Or, you can write text, but must specify an encoding to use when
writing the data to the file:

>>> path = tempdir.write('currencies.txt', some_text, 'utf-8')
>>> with open(path, 'rb') as currencies:
... currencies.read()
b'\xc2\xa3'

The same is true when reading files. You can either read bytes:

>>> tempdir.read('currencies.txt') == some_bytes
True

Or, you can read text, but must specify an encoding that will be used
to decode the data in the file:

>>> tempdir.read('currencies.txt', 'utf-8') == some_text
True

Working with an existing sandbox

Some testing infrastructure already provides a sandbox temporary
directory, however that infrastructure might not provide the same
level of functionality that TempDirectory
provides.

For this reason, it is possible to wrap an existing directory such as
the following with a TempDirectory:

>>> from tempfile import mkdtemp
>>> thedir = mkdtemp()

When working with the context manager, this is done as follows:

>>> with TempDirectory(path=thedir) as d:
... d.write('file', b'data')
... d.makedir('directory')
... sorted(os.listdir(thedir))
'...'
'...'
['directory', 'file']

For the decorator, usage would be as follows:

from testfixtures import tempdir, compare

@tempdir(path=thedir)
def test_function(d):
 d.write('file', b'data')
 d.makedir('directory')
 assert sorted(os.listdir(thedir))==['directory', 'file']

It is important to note that if an existing directory is used, it will
not be deleted by either the decorator or the context manager. You
will need to make sure that the directory is cleaned up as required.

Using with Manuel

Manuel [http://pypi.python.org/pypi/manuel] is an excellent take on testing the examples found in
documentation. It works by applying a set of specialised
parsers to the documentation and testing or otherwise using the the
blocks returned by those parsers.

The key differences between testing with Manuel and the traditional
doctest are that it is possible to plug in different types of parser,
not just the “python console session” one, and so it is possible to
test different types of examples. TestFixtures provides one these
plugins to aid working with
TempDirectory objects. This plugin makes use of
topic directives with specific classes set to perform
different actions.

The following sections describe how to use this plugin to help with
writing temporary files and checking their contents.

Setting up

To use the Manuel plugin, you need to make sure a
TempDirectory instance is available under a particular name
in the test globals. This name is then passed to the plugin’s
constructor and the plugin is passed to Manuel’s
TestSuite constructor.

The following example shows how to return a test suite that will
execute all of the examples below. These require not only the
TestFixtures plugin but also the Manuel plugins that give more
traditional doctest behaviour, hidden code blocks
that are useful for setting things up and checking examples without
breaking up the flow of the documentation, and capturing of examples
from the documentation to use for use in other forms of testing:

from glob import glob
from manuel import doctest, capture
from manuel.testing import TestSuite
from os.path import join
from testfixtures import TempDirectory
from testfixtures.manuel import Files

from . import compat

def setUp(test):
 test.globs['tempdir'] = TempDirectory()

def tearDown(test):
 test.globs['tempdir'].cleanup()

def test_suite():
 m = doctest.Manuel()
 m += compat.Manuel()
 m += capture.Manuel()
 m += Files('tempdir')
 return TestSuite(
 m,
 setUp=setUp,
 tearDown=tearDown,
 glob(join(path_to_your_docs, '.txt'))
)

Writing files

To write a file with the plugin, a topic with a class of
write-file is included in the documentation. The following example
is a complete reStructuredText file that shows how to write a file
that is then used by a later example:

Here's an example configuration file:

.. topic:: example.cfg
 :class: write-file

 ::

 [A Section]
 dir=frob
 long: this value continues
 on the next line

.. invisible-code-block: python

 from testfixtures.compat import PY3
 # change to the temp directory
 import os
 original_dir = os.getcwd()
 os.chdir(tempdir.path)

To parse this file using the :mod:`ConfigParser` module, you would
do the following:

.. code-block:: python

 if PY3:
 from configparser import ConfigParser
 else:
 from ConfigParser import ConfigParser
 config = ConfigParser()
 config.read('example.cfg')

The items in the section are now available as follows:

>>> for name, value in sorted(config.items('A Section')):
... print('{0!r}:{1!r}'.format(name, value))
'dir':'frob'
'long':'this value continues\non the next line'

.. invisible-code-block: python

 # change out again
 import os
 os.chdir(original_dir)

Checking the contents of files

To read a file with the plugin, a topic with a class of
read-file is included in the documentation. The following example
is a complete reStructuredText file that shows how to check the values
written by the code being documented while also using this check as
part of the documentation:

.. invisible-code-block: python

 from testfixtures.compat import PY3
 # change to the temp directory
 import os
 original_dir = os.getcwd()
 os.chdir(tempdir.path)

To construct a configuration file using the :mod:`ConfigParser`
module, you would do the following:

.. code-block:: python

 if PY3:
 from configparser import ConfigParser
 else:
 from ConfigParser import ConfigParser
 config = ConfigParser()
 config.add_section('A Section')
 config.set('A Section', 'dir', 'frob')
 f = open('example.cfg','w')
 config.write(f)
 f.close()

The generated configuration file will be as follows:

.. topic:: example.cfg
 :class: read-file

 ::

 [A Section]
 dir = frob

.. config parser writes whitespace at the end, be careful when testing!

.. invisible-code-block: python

 # change out again
 import os
 os.chdir(original_dir)

Checking the contents of directories

While the TestFixtures plugin itself does not offer any facility for
checking the contents of directories, Manuel’s capture
plugin can be used in conjunction with the existing features of a
TempDirectory to illustrate the contents expected
in a directory seamlessly within the documentation.

Here’s a complete reStructuredText document that illustrates this
technique:

Here's an example piece of code that creates some files and
directories:

.. code-block:: python

 import os

 def spew(path):
 with open(os.path.join(path, 'root.txt'), 'wb') as f:
 f.write(b'root output')
 os.mkdir(os.path.join(path, 'subdir'))
 with open(os.path.join(path, 'subdir', 'file.txt'), 'wb') as f:
 f.write(b'subdir output')
 os.mkdir(os.path.join(path, 'subdir', 'logs'))

This function is used as follows:

>>> spew(tempdir.path)

This will create the following files and directories::

 root.txt
 subdir/
 subdir/file.txt
 subdir/logs/

.. -> expected_listing

.. invisible-code-block: python

 # check the listing was as expected
 tempdir.compare(expected_listing.strip().split('\n'))

A note on encoding and line endings

As currently implemented, the plugin provided by TestFixtures only works
with textual file content that can be encoded using the ASCII
character set. This content will always be written with '\n' line
seperators and, when read, will always have its line endings
normalised to '\n'. If you hit any limitations caused by this,
please raise an issue in the tracker on GitHub.

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Testing exceptions

The unittest [http://docs.python.org/library/unittest.html#module-unittest] support for asserting that exceptions are raised
when expected is fairly weak. Like many other Python testing
libraries, TestFixtures has tools to help with this.

The ShouldRaise context manager

If you are using a version of Python where the with [http://docs.python.org/reference/compound_stmts.html#with]
statement can be used, it’s recommended that you use the
ShouldRaise context manager.

Suppose we wanted to test the following function to make sure that the
right exception was raised:

def the_thrower(throw=True):
 if throw:
 raise ValueError('Not good!')

The following example shows how to test that the correct exception is
raised:

>>> from testfixtures import ShouldRaise
>>> with ShouldRaise(ValueError('Not good!')):
... the_thrower()

If the exception raised doesn’t match the one expected,
ShouldRaise will raise an AssertionError
causing the tests in which it occurs to fail:

>>> with ShouldRaise(ValueError('Is good!')):
... the_thrower()
Traceback (most recent call last):
...
AssertionError: ValueError('Not good!',) raised, ValueError('Is good!',) expected

If you’re not concerned about anything more than the type of the
exception that’s raised, you can check as follows:

>>> from testfixtures import ShouldRaise
>>> with ShouldRaise(ValueError):
... the_thrower()

If you’re feeling slack and just want to check that an exception is
raised, but don’t care about the type of that exception, the following
will suffice:

>>> from testfixtures import ShouldRaise
>>> with ShouldRaise():
... the_thrower()

If no exception is raised by the code under test, ShouldRaise
will raise an AssertionError to indicate this:

>>> from testfixtures import ShouldRaise
>>> with ShouldRaise():
... the_thrower(throw=False)
Traceback (most recent call last):
...
AssertionError: No exception raised!

ShouldRaise has been implemented such that it can be
successfully used to test if code raises both SystemExit and
KeyboardInterrupt exceptions.

To help with SystemExit and other exceptions that are
tricky to construct yourself, ShouldRaise instances have a
raised attribute. This will contain the actual
exception raised and can be used to inspect parts of it:

>>> import sys
>>> from testfixtures import ShouldRaise
>>> with ShouldRaise() as s:
... sys.exit(42)
>>> s.raised.code
42

The should_raise() decorator

If you are working in a traditional unittest [http://docs.python.org/library/unittest.html#module-unittest] environment and
want to check that a particular test function raises an exception, you
may find the decorator suits your needs better:

from testfixtures import should_raise

@should_raise(ValueError('Not good!'))
def test_function():
 the_thrower()

This decorator behaves exactly as the ShouldRaise context
manager described in the documentation above.

Note

It is slightly recommended that you use the context manager rather
than the decorator in most cases. With the decorator, all exceptions
raised within the decorated function will be checked, which can
hinder test development. With the context manager, you can make
assertions about only the exact lines of code that you expect to
raise the exception.

Exceptions that are conditionally raised

Some exceptions are only raised in certain versions of Python. For
example, in Python 2, bytes() will turn both bytes and strings into
bytes, while in Python 3, it will raise an exception when presented
with a string. If you wish to make assertions that this behaviour is
expected, you can use the unless option to ShouldRaise
as follows:

import sys
from testfixtures import ShouldRaise

PY2 = sys.version_info[:2] < (3, 0)

with ShouldRaise(TypeError, unless=PY2):
 bytes('something')

Note

Do not abuse this functionality to make sloppy assertions. It is
always better have two different tests that cover a case when an
exception should be raised and a case where an exception should not
be raised rather than using it above functionality. It is only
provided to help in cases where something in the environment that
cannot be mocked out or controlled influences whether or not an
exception is raised.

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Testing warnings

The unittest [http://docs.python.org/library/unittest.html#module-unittest] support for asserting that warnings are issued
when expected is fairly convoluted, so TestFixtures has tools to help with this.

The ShouldWarn context manager

This context manager allows you to assert that particular warnings are
recorded in a block of code, for example:

>>> from warnings import warn
>>> from testfixtures import ShouldWarn
>>> with ShouldWarn(UserWarning('you should fix that')):
... warn('you should fix that')

If a warning issued doesn’t match the one expected,
ShouldWarn will raise an AssertionError
causing the test in which it occurs to fail:

>>> from warnings import warn
>>> from testfixtures import ShouldWarn
>>> with ShouldWarn(UserWarning('you should fix that')):
... warn("sorry dave, I can't let you do that")
Traceback (most recent call last):
...
AssertionError: sequence not as expected:

same:
[]

expected:
[
 <C(failed):....UserWarning>
 args:('you should fix that',) != ("sorry dave, I can't let you do that",)
 </C>]

actual:
[UserWarning("sorry dave, I can't let you do that",)]

You can check multiple warnings in a particular piece of code:

>>> from warnings import warn
>>> from testfixtures import ShouldWarn
>>> with ShouldWarn(UserWarning('you should fix that'),
... UserWarning('and that too')):
... warn('you should fix that')
... warn('and that too')

If you want to inspect more details of the warnings issued, you can capture
them into a list as follows:

>>> from warnings import warn_explicit
>>> from testfixtures import ShouldWarn
>>> with ShouldWarn() as captured:
... warn_explicit(message='foo', category=DeprecationWarning,
... filename='bar.py', lineno=42)
>>> len(captured)
1
>>> captured[0].message
DeprecationWarning('foo',)
>>> captured[0].lineno
42

The ShouldNotWarn context manager

If you do not expect any warnings to be logged in a piece of code, you can use
the ShouldNotWarn context manager. If any warnings are issued in the
context it manages, it will raise an AssertionError to indicate this:

>>> from warnings import warn
>>> from testfixtures import ShouldNotWarn
>>> with ShouldNotWarn():
... warn("woah dude")
Traceback (most recent call last):
...
AssertionError: sequence not as expected:

same:
[]

expected:
[]

actual:
[UserWarning('woah dude',)]

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Testing use of the subprocess package

When using the subprocess [http://docs.python.org/library/subprocess.html#module-subprocess] package there are two approaches to testing:

	Have your tests exercise the real processes being instantiated and used.

	Mock out use of the subprocess [http://docs.python.org/library/subprocess.html#module-subprocess] package and provide expected output
while recording interactions with the package to make sure they are as
expected.

While the first of these should be preferred, it means that you need to have all
the external software available everywhere you wish to run tests. Your tests
will also need to make sure any dependencies of that software on
an external environment are met. If that external software takes a long time to
run, your tests will also take a long time to run.

These challenges can often make the second approach more practical and can
be the more pragmatic approach when coupled with a mock that accurately
simulates the behaviour of a subprocess. MockPopen
is an attempt to provide just such a mock.

Note

To use MockPopen, you must have the
mock package installed.

Example usage

As an example, suppose you have code such as the following that you need to
test:

from subprocess import Popen, PIPE

def my_func():
 process = Popen('svn ls -R foo', stdout=PIPE, stderr=PIPE, shell=True)
 out, err = process.communicate()
 if process.returncode:
 raise RuntimeError('something bad happened')
 return out

Tests that exercises this code using MockPopen
could be written as follows:

from unittest import TestCase

from mock import call
from testfixtures import Replacer, ShouldRaise, compare
from testfixtures.popen import MockPopen

class TestMyFunc(TestCase):

 def setUp(self):
 self.Popen = MockPopen()
 self.r = Replacer()
 self.r.replace(dotted_path, self.Popen)
 self.addCleanup(self.r.restore)

 def test_example(self):
 # set up
 self.Popen.set_command('svn ls -R foo', stdout=b'o', stderr=b'e')

 # testing of results
 compare(my_func(), b'o')

 # testing calls were in the right order and with the correct parameters:
 compare([
 call.Popen('svn ls -R foo',
 shell=True, stderr=PIPE, stdout=PIPE),
 call.Popen_instance.communicate()
], Popen.mock.method_calls)

 def test_example_bad_returncode(self):
 # set up
 Popen.set_command('svn ls -R foo', stdout=b'o', stderr=b'e',
 returncode=1)

 # testing of error
 with ShouldRaise(RuntimeError('something bad happened')):
 my_func()

Passing input to processes

If your testing requires passing input to the subprocess, you can do so by
checking for the input passed to communicate() [http://docs.python.org/library/subprocess.html#subprocess.Popen.communicate] method
when you check the calls on the mock as shown in this example:

def test_communicate_with_input(self):
 # setup
 Popen = MockPopen()
 Popen.set_command('a command')
 # usage
 process = Popen('a command', stdout=PIPE, stderr=PIPE, shell=True)
 out, err = process.communicate('foo')
 # test call list
 compare([
 call.Popen('a command', shell=True, stderr=-1, stdout=-1),
 call.Popen_instance.communicate('foo'),
], Popen.mock.method_calls)

Note

Accessing .stdin isn’t current supported by this mock.

Reading from stdout and stderr

The .stdout and .stderr attributes of the mock returned by
MockPopen will be file-like objects as with
the real Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen] and can be read as shown in this example:

def test_read_from_stdout_and_stderr(self):
 # setup
 Popen = MockPopen()
 Popen.set_command('a command', stdout=b'foo', stderr=b'bar')
 # usage
 process = Popen('a command', stdout=PIPE, stderr=PIPE, shell=True)
 compare(process.stdout.read(), b'foo')
 compare(process.stderr.read(), b'bar')
 # test call list
 compare([
 call.Popen('a command', shell=True, stderr=PIPE, stdout=PIPE),
], Popen.mock.method_calls)

Warning

While these streams behave a lot like the streams of a real
Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen] object, they do not exhibit the deadlocking
behaviour that can occur when the two streams are read as in the example
above. Be very careful when reading .stdout and .stderr and
consider using communicate instead.

Specifying the return code

Often code will need to behave differently depending on the return code of the
launched process. Specifying a simulated response code, along with testing for
the correct usage of wait() [http://docs.python.org/library/subprocess.html#subprocess.Popen.wait], can be seen in the
following example:

def test_wait_and_return_code(self):
 # setup
 Popen = MockPopen()
 Popen.set_command('a command', returncode=3)
 # usage
 process = Popen('a command')
 compare(process.returncode, None)
 # result checking
 compare(process.wait(), 3)
 compare(process.returncode, 3)
 # test call list
 compare([
 call.Popen('a command'),
 call.Popen_instance.wait(),
], Popen.mock.method_calls)

Checking for signal sending

Calls to .send_signal(), .terminate() and .kill() are all recorded
by the mock returned by MockPopen
but otherwise do nothing as shown in the following example, which doesn’t
make sense for a real test of sub-process usage but does show how the mock
behaves:

def test_send_signal(self):
 # setup
 Popen = MockPopen()
 Popen.set_command('a command')
 # usage
 process = Popen('a command', stdout=PIPE, stderr=PIPE, shell=True)
 process.send_signal(0)
 # result checking
 compare([
 call.Popen('a command', shell=True, stderr=-1, stdout=-1),
 call.Popen_instance.send_signal(0),
], Popen.mock.method_calls)

Polling a process

The poll() [http://docs.python.org/library/subprocess.html#subprocess.Popen.poll] method is often used as part of a loop
in order to do other work while waiting for a sub-process to complete.
The mock returned by MockPopen supports this
by allowing the .poll() method to be called a number of times before
the returncode is set using the poll_count parameter as shown in
the following example:

def test_poll_until_result(self):
 # setup
 Popen = MockPopen()
 Popen.set_command('a command', returncode=3, poll_count=2)
 # example usage
 process = Popen('a command')
 while process.poll() is None:
 # you'd probably have a sleep here, or go off and
 # do some other work.
 pass
 # result checking
 compare(process.returncode, 3)
 compare([
 call.Popen('a command'),
 call.Popen_instance.poll(),
 call.Popen_instance.poll(),
 call.Popen_instance.poll(),
], Popen.mock.method_calls)

Using default behaviour

If you’re testing something that needs to make many calls to many different
commands that all behave the same, it can be tedious to specify the behaviour
of each with set_command. For this case, MockPopen
has the set_default method which can be used to set the
behaviour of any command that has not been specified with
set_command as shown in the
following example:

def test_default_behaviour(self):
 # set up
 self.Popen.set_default(stdout=b'o', stderr=b'e')

 # testing of results
 compare(my_func(), b'o')

 # testing calls were in the right order and with the correct parameters:
 compare([
 call.Popen('svn ls -R foo',
 shell=True, stderr=PIPE, stdout=PIPE),
 call.Popen_instance.communicate()
], Popen.mock.method_calls)

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Testing with zope.component

zope.component [http://pypi.python.org/pypi/zope.component] is a fantastic aspect-oriented library for Python,
however its unit testing support is somewhat convoluted. If you need
to test code that registers adapters, utilities and the like then you
may need to provide a sterile component registry. For historical
reasons, component registries are known as Site Managers in
zope.component.

TestFixtures provides the a TestComponents helper
which provides just such a sterile registry. It should be instantiated
in your TestCase‘s setUp() method. It’s
uninstall() method should be called in the test’s
tearDown() method.

Normally, zope.component.getSiteManager() returns whatever
the current registry is. This may be influenced by frameworks that use
zope.component which can means that unit tests have no
baseline to start with:

>>> original = getSiteManager()
>>> print(original)
<BaseGlobalComponents base>

Once we’ve got a TestComponents in place, we know what
we’re getting:

>>> components = TestComponents()
>>> getSiteManager()
<Components Testing>

The registry that getSiteManager() returns is now also
available as an attribute of the TestComponents
instance:

>>> getSiteManager() is components.registry
True

It’s also empty:

>>> tuple(components.registry.registeredUtilities())
()
>>> tuple(components.registry.registeredAdapters())
()
>>> tuple(components.registry.registeredHandlers())
()

You can do whatever you like with this registry. When you’re done,
just call the uninstall() method:

>>> components.uninstall()

Now you’ll have the original registy back in place:

>>> getSiteManager() is original
True

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Utilities

This section describes a few handy functions that didn’t fit nicely in
any other section.

The generator helper

It can be handy when testing to be able to turn a simple sequence into
a generator. This can be necessary when you want to check that your
code will behave correctly when processing a generator instead of a
simple sequence, or when you’re looking to make assertions about the
expected return value of a callable that returns a generator.

If you need to turn a simple sequence into a generator, the
generator() function is the way to do it:

>>> from testfixtures import generator
>>> generator(1,2,3)
<generator object ...>

Iterating over this generator will return the arguments passed to the
generator() function:

>>> for i in _:
... print(i, end=' ')
1 2 3

The wrap helper

The wrap() helper is a decorator function that allows you to
wrap the call to the decorated callable with calls to other
callables. This can be useful when you want to perform setup and
teardown actions either side of a test function.

For example, take the following functions:

def before():
 print("before")

def after():
 print("after")

The wrap() helper can be used to wrap a function with these:

from testfixtures import wrap

@wrap(before,after)
def a_function():
 print("a_function")

When the wrapped function is executed, the output is as follows:

>>> a_function()
before
a_function
after

The section argument to wrap() is optional:

from testfixtures import wrap

@wrap(before)
def a_function():
 print("a_function")

Now, the wrapped function gives the following output when executed:

>>> a_function()
before
a_function

Multiple wrapping functions can be provided by stacking wrap()
decorations:

def before1():
 print("before 1")

def after1():
 print("after 1")

def before2():
 print("before 2")

def after2():
 print("after 2")

@wrap(before2,after2)
@wrap(before1,after1)
def a_function():
 print("a_function")

The order of execution is illustrated below:

>>> a_function()
before 1
before 2
a_function
after 2
after 1

The results of calling the wrapping functions executed before the
wrapped function can be made available to the wrapped function
provided it accepts positional arguments for these results:

def before1():
 return "return 1"

def before2():
 return "return 2"

@wrap(before2)
@wrap(before1)
def a_function(r1,r2):
 print(r1)
 print(r2)

Calling the wrapped function illustrates the behaviour:

>>> a_function()
return 1
return 2

Finally, the return value of the wrapped function will always be that
of the original function:

def before1():
 return 1

def after1():
 return 2

def before2():
 return 3

def after2():
 return 4

@wrap(before2,after2)
@wrap(before1,after2)
def a_function():
 return 'original'

When the above wrapped function is executed, the original return value
is still returned:

>>> a_function()
'original'

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

API Reference

	
class testfixtures.Comparison(object_or_type, attribute_dict=None, strict=True, **attributes)

	These are used when you need to compare objects
that do not natively support comparison.

	Parameters:	
	object_or_type – The object or class from which to create the
Comparison.

	attribute_dict – An optional dictionary containing attibutes
to place on the Comparison.

	strict – If true, any expected attributes not present or extra
attributes not expected on the object involved in the
comparison will cause the comparison to fail.

	attributes – Any other keyword parameters passed will placed
as attributes on the Comparison.

	
class testfixtures.LogCapture(names=None, install=True, level=1, propagate=None, attributes=('name', 'levelname', 'getMessage'), recursive_check=False)

	These are used to capture entries logged to the Python logging
framework and make assertions about what was logged.

	Parameters:	
	names – A string (or tuple of strings) containing the dotted name(s)
of loggers to capture. By default, the root logger is
captured.

	install – If True, the LogCapture will be
installed as part of its instantiation.

	propagate – If specified, any captured loggers will have their
propagate attribute set to the supplied value. This can
be used to prevent propagation from a child logger to a
parent logger that has configured handlers.

	attributes – The sequence of attribute names to return for each record or a callable
that extracts a row from a record..

If a sequence of attribute names, those attributes will be taken from the
LogRecord [http://docs.python.org/library/logging.html#logging.LogRecord]. If an attribute is callable, the value
used will be the result of calling it. If an attribute is missing,
None will be used in its place.

If a callable, it will be called with the LogRecord [http://docs.python.org/library/logging.html#logging.LogRecord]
and the value returned will be used as the row..

	recursive_check – If True, log messages will be compared recursively by
LogCapture.check().

	
check(*expected)

	This will compare the captured entries with the expected
entries provided and raise an AssertionError if they
do not match.

	Parameters:	expected – A sequence of 3-tuples containing the
expected log entries. Each tuple should be of
the form (logger_name, string_level, message)

	
clear()

	Clear any entries that have been captured.

	
install()

	Install this LogHandler into the Python logging
framework for the named loggers.

This will remove any existing handlers for those loggers and
drop their level to 1 in order to capture all logging.

	
uninstall()

	Un-install this LogHandler from the Python logging
framework for the named loggers.

This will re-instate any existing handlers for those loggers
that were removed during installation and retore their level
that prior to installation.

	
classmethod uninstall_all()

	This will uninstall all existing LogHandler objects.

	
class testfixtures.OutputCapture(separate=False)

	A context manager for capturing output to the
sys.stdout and sys.stderr streams.

	Parameters:	separate – If True, stdout and stderr will be captured
separately and their expected values must be passed to
compare().

Note

If separate is passed as True,
OutputCapture.captured will be an empty string.

	
captured

	A property containing any output that has been captured so far.

	
compare(expected='', stdout='', stderr='')

	Compare the captured output to that expected. If the output is
not the same, an AssertionError will be raised.

	Parameters:	
	expected – A string containing the expected combined output
of stdout and stderr.

	stdout – A string containing the expected output to stdout.

	stderr – A string containing the expected output to stderr.

	
disable()

	Disable the output capture if it is enabled.

	
enable()

	Enable the output capture if it is disabled.

	
class testfixtures.Replace(target, replacement, strict=True)

	A context manager that uses a Replacer to replace a single target.

	Parameters:	
	target – A string containing the dotted-path to the
object to be replaced. This path may specify a
module in a package, an attribute of a module,
or any attribute of something contained within
a module.

	replacement – The object to use as a replacement.

	strict – When True, an exception will be raised if an
attempt is made to replace an object that does
not exist.

	
class testfixtures.Replacer

	These are used to manage the mocking out of objects so that units
of code can be tested without having to rely on their normal
dependencies.

	
replace(target, replacement, strict=True)

	Replace the specified target with the supplied replacement.

	Parameters:	
	target – A string containing the dotted-path to the
object to be replaced. This path may specify a
module in a package, an attribute of a module,
or any attribute of something contained within
a module.

	replacement – The object to use as a replacement.

	strict – When True, an exception will be raised if an
attempt is made to replace an object that does
not exist.

	
restore()

	Restore all the original objects that have been replaced by
calls to the replace() method of this Replacer.

	
testfixtures.replace(target, replacement, strict=True)

	A decorator to replace a target object for the duration of a test
function.

	Parameters:	
	target – A string containing the dotted-path to the
object to be replaced. This path may specify a
module in a package, an attribute of a module,
or any attribute of something contained within
a module.

	replacement – The object to use as a replacement.

	strict – When True, an exception will be raised if an
attempt is made to replace an object that does
not exist.

	
class testfixtures.RoundComparison(value, precision)

	An object that can be used in comparisons of expected and actual
numerics to a specified precision.

	Parameters:	
	value – numeric to be compared.

	precision – Number of decimal places to round to in order
to perform the comparison.

	
class testfixtures.RangeComparison(lower_bound, upper_bound)

	An object that can be used in comparisons of orderable types to
check that a value specified within the given range.

	Parameters:	
	lower_bound – the inclusive lower bound for the acceptable range.

	upper_bound – the inclusive upper bound for the acceptable range.

	
class testfixtures.ShouldRaise(exception=None, unless=False)

	This context manager is used to assert that an exception is raised
within the context it is managing.

	Parameters:	
	exception – This can be one of the following:

	None, indicating that an exception must be
raised, but the type is unimportant.

	An exception class, indicating that the type
of the exception is important but not the
parameters it is created with.

	An exception instance, indicating that an
exception exactly matching the one supplied
should be raised.

	unless – Can be passed a boolean that, when True indicates that
no exception is expected. This is useful when checking
that exceptions are only raised on certain versions of
Python.

	
raised = None

	The exception captured by the context manager.
Can be used to inspect specific attributes of the exception.

	
class testfixtures.ShouldWarn(*expected)

	This context manager is used to assert that warnings are issued
within the context it is managing.

	Parameters:	expected –
	This should be a sequence made up of one or more elements,

	each of one of the following types:

	A warning class, indicating that the type
of the warnings is important but not the
parameters it is created with.

	A warning instance, indicating that a
warning exactly matching the one supplied
should have been issued.

If no expected warnings are passed, you will need to inspect
the contents of the list returned by the context manager.

	
class testfixtures.ShouldNotWarn

	This context manager is used to assert that no warnings are issued
within the context it is managing.

	
class testfixtures.StringComparison(regex_source)

	An object that can be used in comparisons of expected and actual
strings where the string expected matches a pattern rather than a
specific concrete string.

	Parameters:	regex_source – A string containing the source for a regular
expression that will be used whenever this
StringComparison is compared with
any basestring instance.

	
class testfixtures.TempDirectory(ignore=(), create=True, path=None, encoding=None)

	A class representing a temporary directory on disk.

	Parameters:	
	ignore – A sequence of strings containing regular expression
patterns that match filenames that should be
ignored by the TempDirectory listing and
checking methods.

	create – If True, the temporary directory will be created
as part of class instantiation.

	path – If passed, this should be a string containing a
physical path to use as the temporary directory. When
passed, TempDirectory will not create a new
directory to use.

	encoding – A default encoding to use for read() and
write() operations when the encoding parameter
is not passed to those methods.

	
check(*expected)

	
Deprecated since version 4.3.0.

Compare the contents of the temporary directory with the
expected contents supplied.

This method only checks the root of the temporary directory.

	Parameters:	expected – A sequence of strings containing the names
expected in the directory.

	
check_all(dir, *expected)

	
Deprecated since version 4.3.0.

Recursively compare the contents of the specified directory
with the expected contents supplied.

	Parameters:	
	dir – The directory to check, which can be:

	A tuple of strings, indicating that the
elements of the tuple should be used as directory
names to traverse from the root of the
temporary directory to find the directory to be
checked.

	A forward-slash separated string, indicating
the directory or subdirectory that should be
traversed to from the temporary directory and
checked.

	An empty string, indicating that the whole
temporary directory should be checked.

	expected – A sequence of strings containing the paths
expected in the directory. These paths should
be forward-slash separated and relative to
the root of the temporary directory.

	
check_dir(dir, *expected)

	
Deprecated since version 4.3.0.

Compare the contents of the specified subdirectory of the
temporary directory with the expected contents supplied.

This method will only check the contents of the subdirectory
specified and will not recursively check subdirectories.

	Parameters:	
	dir – The subdirectory to check, which can be:

	A tuple of strings, indicating that the
elements of the tuple should be used as directory
names to traverse from the root of the
temporary directory to find the directory to be
checked.

	A forward-slash separated string, indicating
the directory or subdirectory that should be
traversed to from the temporary directory and
checked.

	expected – A sequence of strings containing the names
expected in the directory.

	
cleanup()

	Delete the temporary directory and anything in it.
This TempDirectory cannot be used again unless
create() is called.

	
classmethod cleanup_all()

	Delete all temporary directories associated with all
TempDirectory objects.

	
compare(expected, path=None, files_only=False, recursive=True, followlinks=False)

	Compare the expected contents with the actual contents of the temporary
directory. An AssertionError will be raised if they are not the
same.

	Parameters:	
	expected – A sequence of strings containing the paths
expected in the directory. These paths should
be forward-slash separated and relative to
the root of the temporary directory.

	path – The path to use as the root for the comparison,
relative to the root of the temporary directory.
This can either be:

	A tuple of strings, making up the relative path.

	A forward-slash separated string.

If it is not provided, the root of the temporary
directory will be used.

	files_only – If specified, directories will be excluded from
the list of actual paths used in the comparison.

	recursive – If passed as False, only the direct contents of
the directory specified by path will be included
in the actual contents used for comparison.

	followlinks – If passed as True, symlinks and hard links
will be followed when recursively building up
the actual list of directory contents.

	
create()

	Create a temporary directory for this instance to use if one
has not already been created.

	
getpath(path)

	Return the full path on disk that corresponds to the path
relative to the temporary directory that is passed in.

	Parameters:	path – The path to the file to create, which can be:

	A tuple of strings.

	A forward-slash separated string.

	Returns:	A string containing the full path.

	
listdir(path=None, recursive=False)

	Print the contents of the specified directory.

	Parameters:	
	path – The path to list, which can be:

	None, indicating the root of the temporary
directory should be listed.

	A tuple of strings, indicating that the
elements of the tuple should be used as directory
names to traverse from the root of the
temporary directory to find the directory to be
listed.

	A forward-slash separated string, indicating
the directory or subdirectory that should be
traversed to from the temporary directory and
listed.

	recursive – If True, the directory specified will have
its subdirectories recursively listed too.

	
makedir(dirpath)

	Make an empty directory at the specified path within the
temporary directory. Any intermediate subdirectories that do
not exist will also be created.

	Parameters:	dirpath – The directory to create, which can be:

	A tuple of strings.

	A forward-slash separated string.

	Returns:	The full path of the created directory.

	
path = None

	The physical path of the TempDirectory on disk

	
read(filepath, encoding=None)

	Reads the file at the specified path within the temporary
directory.

The file is always read in binary mode. Bytes will be returned unless
an encoding is supplied, in which case a unicode string of the decoded
data will be returned.

	Parameters:	
	filepath – The path to the file to read, which can be:

	A tuple of strings.

	A forward-slash separated string.

	encoding – The encoding used to decode the data in the file.

	Returns:	A string containing the data read.

	
write(filepath, data, encoding=None)

	Write the supplied data to a file at the specified path within
the temporary directory. Any subdirectories specified that do
not exist will also be created.

The file will always be written in binary mode. The data supplied must
either be bytes or an encoding must be supplied to convert the string
into bytes.

	Parameters:	
	filepath – The path to the file to create, which can be:

	A tuple of strings.

	A forward-slash separated string.

	data – A string containing the data to be written.

	encoding – The encoding to be used if data is not bytes. Should
not be passed if data is already bytes.

	Returns:	The full path of the file written.

	
testfixtures.compare(x, y, prefix=None, suffix=None, raises=True, recursive=True, strict=False, comparers=None, **kw)

	Compare the two arguments passed either positionally or using
explicit expected and actual keyword paramaters. An
AssertionError will be raised if they are not the same.
The AssertionError raised will attempt to provide
descriptions of the differences found.

Any other keyword parameters supplied will be passed to the functions
that end up doing the comparison. See the API documentation below
for details of these.

	Parameters:	
	prefix – If provided, in the event of an AssertionError
being raised, the prefix supplied will be prepended to the
message in the AssertionError.

	suffix – If provided, in the event of an AssertionError
being raised, the suffix supplied will be appended to the
message in the AssertionError.

	raises – If False, the message that would be raised in the
AssertionError will be returned instead of the
exception being raised.

	recursive – If True, when a difference is found in a
nested data structure, attempt to highlight the location
of the difference.

	strict – If True, objects will only compare equal if they are
of the same type as well as being equal.

	comparers – If supplied, should be a dictionary mapping
types to comparer functions for those types. These will
be added to the global comparer registry for the duration
of this call.

	
testfixtures.comparison.register(type, comparer)

	Register the supplied comparer for the specified type.
This registration is global and will be in effect from the point
this function is called until the end of the current process.

	
testfixtures.comparison.compare_simple(x, y, context)

	Returns a very simple textual difference between the two supplied objects.

	
testfixtures.comparison.compare_with_type(x, y, context)

	Return a textual description of the difference between two objects
including information about their types.

	
testfixtures.comparison.compare_sequence(x, y, context)

	Returns a textual description of the differences between the two
supplied sequences.

	
testfixtures.comparison.compare_generator(x, y, context)

	Returns a textual description of the differences between the two
supplied generators.

This is done by first unwinding each of the generators supplied
into tuples and then passing those tuples to
compare_sequence().

	
testfixtures.comparison.compare_tuple(x, y, context)

	Returns a textual difference between two tuples or
collections.namedtuple() [http://docs.python.org/library/collections.html#collections.namedtuple] instances.

The presence of a _fields attribute on a tuple is used to
decide whether or not it is a namedtuple() [http://docs.python.org/library/collections.html#collections.namedtuple].

	
testfixtures.comparison.compare_dict(x, y, context)

	Returns a textual description of the differences between the two
supplied dictionaries.

	
testfixtures.comparison.compare_set(x, y, context)

	Returns a textual description of the differences between the two
supplied sets.

	
testfixtures.comparison.compare_text(x, y, context)

	Returns an informative string describing the differences between the two
supplied strings. The way in which this comparison is performed
can be controlled using the following parameters:

	Parameters:	
	blanklines – If False, then when comparing multi-line
strings, any blank lines in either argument
will be ignored.

	trailing_whitespace – If False, then when comparing
multi-line strings, trailing
whilespace on lines will be ignored.

	show_whitespace – If True, then whitespace characters in
multi-line strings will be replaced with their
representations.

	
testfixtures.diff(x, y, x_label='', y_label='')

	A shorthand function that uses difflib [http://docs.python.org/library/difflib.html#module-difflib] to return a
string representing the differences between the two string
arguments.

Most useful when comparing multi-line strings.

	
testfixtures.generator(*args)

	A utility function for creating a generator that will yield the
supplied arguments.

	
testfixtures.log_capture(*names, **kw)

	A decorator for making a LogCapture installed an
available for the duration of a test function.

	Parameters:	names – An optional sequence of names specifying the loggers
to be captured. If not specified, the root logger
will be captured.

Keyword parameters other than install may also be supplied and will be
passed on to the LogCapture constructor.

	
class testfixtures.should_raise(exception=None, unless=None)

	A decorator to assert that the decorated function will raised
an exception. An exception class or exception instance may be
passed to check more specifically exactly what exception will be
raised.

	Parameters:	
	exception – This can be one of the following:

	None, indicating that an exception must be
raised, but the type is unimportant.

	An exception class, indicating that the type
of the exception is important but not the
parameters it is created with.

	An exception instance, indicating that an
exception exactly matching the one supplied
should be raised.

	unless – Can be passed a boolean that, when True indicates that
no exception is expected. This is useful when checking
that exceptions are only raised on certain versions of
Python.

	
testfixtures.tempdir(*args, **kw)

	A decorator for making a TempDirectory available for the
duration of a test function.

All arguments and parameters are passed through to the
TempDirectory constructor.

	
testfixtures.test_date(year=2001, month=1, day=1, delta=None, delta_type='days', strict=False)

	A function that returns a mock object that can be used in place of
the datetime.date [http://docs.python.org/library/datetime.html#datetime.date] class but where the return value of
today() [http://docs.python.org/library/datetime.html#datetime.date.today] can be controlled.

If a single positional argument of None is passed, then the
queue of dates to be returned will be empty and you will need to
call set() or add() before calling
today().

	Parameters:	
	year – An optional year used to create the first date returned by
today() [http://docs.python.org/library/datetime.html#datetime.date.today].

	month – An optional month used to create the first date returned by
today() [http://docs.python.org/library/datetime.html#datetime.date.today].

	day – An optional day used to create the first date returned by
today() [http://docs.python.org/library/datetime.html#datetime.date.today].

	delta – The size of the delta to use between values returned
from today() [http://docs.python.org/library/datetime.html#datetime.date.today]. If not specified,
it will increase by 1 with each call to
today() [http://docs.python.org/library/datetime.html#datetime.date.today].

	delta_type – The type of the delta to use between values returned
from today() [http://docs.python.org/library/datetime.html#datetime.date.today]. This can be
any keyword parameter accepted by the
timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta] constructor.

	strict – If True, calling the mock class and any of its
methods will result in an instance of the mock
being returned. If False, the default, an
instance of date [http://docs.python.org/library/datetime.html#datetime.date] will be returned
instead.

The mock returned will behave exactly as the datetime.date [http://docs.python.org/library/datetime.html#datetime.date]
class with the exception of the following members:

	
tdate.add(*args, **kw)

	This will add the datetime.date [http://docs.python.org/library/datetime.html#datetime.date] created from the
supplied parameters to the queue of dates to be returned by
today() [http://docs.python.org/library/datetime.html#datetime.date.today]. An instance
of date [http://docs.python.org/library/datetime.html#datetime.date] may also be passed as a single
positional argument.

	
tdate.set(*args, **kw)

	This will set the datetime.date [http://docs.python.org/library/datetime.html#datetime.date] created from the
supplied parameters as the next date to be returned by
today() [http://docs.python.org/library/datetime.html#datetime.date.today], regardless of any dates in the
queue. An instance
of date [http://docs.python.org/library/datetime.html#datetime.date] may also be passed as a single
positional argument.

	
classmethod tdate.today()

	This will return the next supplied or calculated date from the
internal queue, rather than the actual current date.

	
testfixtures.test_datetime(year=2001, month=1, day=1, hour=0, minute=0, second=0, microsecond=0, tzinfo=None, delta=None, delta_type='seconds', date_type=datetime.date, strict=False)

	A function that returns a mock object that can be used in place of
the datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime] class but where the return value of
now() can be controlled.

If a single positional argument of None is passed, then the
queue of datetimes to be returned will be empty and you will need to
call set() or add() before calling
now() or utcnow().

	Parameters:	
	year – An optional year used to create the first datetime returned by
now().

	month – An optional month used to create the first datetime returned by
now().

	day – An optional day used to create the first datetime returned by
now().

	hour – An optional hour used to create the first datetime returned by
now().

	minute – An optional minute used to create the first datetime returned by
now().

	second – An optional second used to create the first datetime returned by
now().

	microsecond – An optional microsecond used to create the first datetime returned by
now().

	tzinfo – An optional tzinfo that will be used to indicate the
timezone intended for the values returned by
returned by now(). It will be used to
correctly calculate return values when tz is passed
to now() and when
utcnow() is called.

	delta – The size of the delta to use between values returned
from now(). If not specified,
it will increase by 1 with each call to
now().

	delta_type – The type of the delta to use between values returned
from now(). This can be
any keyword parameter accepted by the
timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta] constructor.

	date_type – The type to use for the return value of the
date() [http://docs.python.org/library/datetime.html#datetime.datetime.date] method. This can
help with gotchas that occur when type checking
if performed on values returned by the mock’s
date() [http://docs.python.org/library/datetime.html#datetime.datetime.date] method.

	strict – If True, calling the mock class and any of its
methods will result in an instance of the mock
being returned. If False, the default, an
instance of datetime [http://docs.python.org/library/datetime.html#datetime.datetime] will be
returned instead.

The mock returned will behave exactly as the datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime]
class with the exception of the following members:

	
tdatetime.add(*args, **kw)

	This will add the datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime] created from the
supplied parameters to the queue of datetimes to be returned by
now() or utcnow(). An instance
of datetime [http://docs.python.org/library/datetime.html#datetime.datetime] may also be passed as a single
positional argument.

	
tdatetime.set(*args, *kw)

	This will set the datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime] created from the
supplied parameters as the next datetime to be returned by
now() or utcnow(), clearing out
any datetimes in the queue. An instance
of datetime [http://docs.python.org/library/datetime.html#datetime.datetime] may also be passed as a single
positional argument.

	
classmethod tdatetime.now([tz])

	

	Parameters:	tz – An optional timezone to apply to the returned time.
If supplied, it must be an instance of a
tzinfo [http://docs.python.org/library/datetime.html#datetime.tzinfo] subclass.

This will return the next supplied or calculated datetime from the
internal queue, rather than the actual current datetime.

If tz is supplied, it will be applied to the datetime that
would have have been returned from the internal queue, treating
that datetime as if it were in the UTC timezone.

	
classmethod tdatetime.utcnow()

	This will return the next supplied or calculated datetime from the
internal queue, rather than the actual current UTC datetime.

No timezone will be applied, even that supplied to the constructor.

	
classmethod tdatetime.date()

	This will return the date component of the current mock instance,
but using the date type supplied when the mock class was created.

	
testfixtures.test_time(year=2001, month=1, day=1, hour=0, minute=0, second=0, microsecond=0, tzinfo=None, delta=None, delta_type='seconds')

	A function that returns a mock object that can be used in place of
the time.time function but where the return value can be
controlled.

If a single positional argument of None is passed, then the
queue of times to be returned will be empty and you will need to
call set() or add() before calling
the mock.

	Parameters:	
	year – An optional year used to create the first time returned.

	month – An optional month used to create the first time.

	day – An optional day used to create the first time.

	hour – An optional hour used to create the first time.

	minute – An optional minute used to create the first time.

	second – An optional second used to create the first time.

	microsecond – An optional microsecond used to create the first time.

	delta – The size of the delta to use between values returned.
If not specified, it will increase by 1 with each
call to the mock.

	delta_type – The type of the delta to use between values
returned. This can be
any keyword parameter accepted by the
timedelta [http://docs.python.org/library/datetime.html#datetime.timedelta] constructor.

The mock additionally has the following methods available on it:

	
ttime.add(*args, **kw)

	This will add the time specified by the supplied parameters to the
queue of times to be returned by calls to the mock. The
parameters are the same as the datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime]
constructor. An instance of datetime [http://docs.python.org/library/datetime.html#datetime.datetime] may also
be passed as a single positional argument.

	
ttime.set(*args, **kw)

	This will set the time specified by the supplied parameters as
the next time to be returned by a call to the mock, regardless of
any times in the queue. The parameters are the same as the
datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime] constructor. An instance of
datetime [http://docs.python.org/library/datetime.html#datetime.datetime] may also be passed as a single
positional argument.

	
testfixtures.wrap(before, after=None)

	A decorator that causes the supplied callables to be called before
or after the wrapped callable, as appropriate.

	
testfixtures.not_there

	A singleton used to represent the absence of a particular attribute.

	
class testfixtures.popen.MockPopen

	A specialised mock for testing use of subprocess.Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen].
An instance of this class can be used in place of the
subprocess.Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen] and is often inserted where it’s needed using
mock.patch() or a Replacer.

	
communicate(input=None)

	Simulate calls to subprocess.Popen.communicate() [http://docs.python.org/library/subprocess.html#subprocess.Popen.communicate]

	
kill()

	Simulate calls to subprocess.Popen.kill() [http://docs.python.org/library/subprocess.html#subprocess.Popen.kill]

	
poll()

	Simulate calls to subprocess.Popen.poll() [http://docs.python.org/library/subprocess.html#subprocess.Popen.poll]

	
send_signal(signal)

	Simulate calls to subprocess.Popen.send_signal() [http://docs.python.org/library/subprocess.html#subprocess.Popen.send_signal]

	
set_command(command, stdout=b'', stderr=b'', returncode=0, pid=1234, poll_count=3)

	Set the behaviour of this mock when it is used to simulate the
specified command.

	Parameters:	
	command – A string representing the command to be simulated.

	stdout – A string representing the simulated content written by the process
to the stdout pipe.

	stderr – A string representing the simulated content written by the process
to the stderr pipe.

	returncode – An integer representing the return code of the simulated process.

	pid – An integer representing the process identifier of the simulated
process. This is useful if you have code the prints out the pids
of running processes.

	poll_count – Specifies the number of times MockPopen.poll() can be
called before MockPopen.returncode is set and returned
by MockPopen.poll().

	
set_default(stdout=b'', stderr=b'', returncode=0, pid=1234, poll_count=3)

	Set the behaviour of this mock when it is used to simulate commands
that have no explicit behavior specified using
set_command().

	Parameters:	
	stdout – A string representing the simulated content written by the process
to the stdout pipe.

	stderr – A string representing the simulated content written by the process
to the stderr pipe.

	returncode – An integer representing the return code of the simulated process.

	pid – An integer representing the process identifier of the simulated
process. This is useful if you have code the prints out the pids
of running processes.

	poll_count – Specifies the number of times MockPopen.poll() can be
called before MockPopen.returncode is set and returned
by MockPopen.poll().

	
terminate()

	Simulate calls to subprocess.Popen.terminate() [http://docs.python.org/library/subprocess.html#subprocess.Popen.terminate]

	
wait()

	Simulate calls to subprocess.Popen.wait() [http://docs.python.org/library/subprocess.html#subprocess.Popen.wait]

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Installation Instructions

If you want to experiment with TestFixtures, the easiest way to
install it is to do the following in a virtualenv:

pip install testfixtures

If your package uses setuptools and you decide to use TestFixtures,
then you should do one of the following:

	Specify testfixtures in the tests_require parameter of your
package’s call to setup in setup.py.

	Add an extra_requires parameter in your call to setup as
follows:

setup(
 # other stuff here
 extras_require=dict(
 test=['testfixtures'],
)
)

Python version requirements

This package has been tested with Python 2.6, 2.7, 3.2 to 3.4 on Linux,
Mac OS X and Windows.

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Development

This package is developed using continuous integration which can be
found here:

https://travis-ci.org/Simplistix/testfixtures

The latest development version of the documentation can be found here:

http://testfixtures.readthedocs.org/en/latest/

If you wish to contribute to this project, then you should fork the
repository found here:

https://github.com/Simplistix/testfixtures/

Once that has been done and you have a checkout, you can follow these
instructions to perform various development tasks:

Setting up a virtualenv

The recommended way to set up a development environment is to turn
your checkout into a virtualenv and then install the package in
editable form as follows:

$ virtualenv .
$ bin/pip install -U -e .[test,build]

Running the tests

Once you’ve set up a virtualenv, the tests can be run as follows:

$ bin/nosetests

Building the documentation

The Sphinx documentation is built by doing the following from the
directory containing setup.py:

$ source bin/activate
$ cd docs
$ make html

To check that the description that will be used on PyPI renders properly,
do the following:

$ python setup.py --long-description | rst2html.py > desc.html

The resulting desc.html should be checked by opening in a browser.

Making a release

To make a release, just update versions.txt, update the change log, tag it
and push to https://github.com/Simplistix/testfixtures
and Travis CI should take care of the rest.

Once Travis CI is done, make sure to go to
https://readthedocs.org/projects/testfixtures/versions/
and make sure the new release is marked as an Active Version.

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	testfixtures 4.12.0 documentation

Changes

4.12.0 (18 October 2016)

	Add support for specifying a callable to extract rows from log records
when using LogCapture.

	Add support for recursive comparison of log messages with LogCapture.

4.11.0 (12 October 2016)

	Allow the attributes returned in LogCapture.actual() rows to be
specified.

	Allow a default to be specified for encoding in TempDirectory.read() and
TempDirectory.write().

4.10.1 (5 September 2016)

	Better docs for TempDirectory.compare().

	Remove the need for expected paths supplied to TempDirectory.compare()
to be in sorted order.

	Document a good way of restoring stdout when in a debugger.

	Fix handling of trailing slashes in TempDirectory.compare().

Thanks to Maximilian Albert for the TempDirectory.compare() docs.

4.10.0 (17 May 2016)

	Fixed examples in documentation broken in 4.5.1.

	Add RangeComparison for comparing against values that fall in a
range.

	Add set_default() to MockPopen.

Thanks to Asaf Peleg for the RangeComparison implementation.

4.9.1 (19 February 2016)

	Fix for use with PyPy, broken since 4.8.0.

Thanks to Nicola Iarocci for the pull request to fix.

4.9.0 (18 February 2016)

	Added the suffix parameter to compare() to allow failure messages
to include some additional context.

	Update package metadata to indicate Python 3.5 compatibility.

Thanks for Felix Yan for the metadata patch.

Thanks to Wim Glenn for the suffix patch.

4.8.0 (2 February 2016)

	Introduce a new Replace context manager and make Replacer
callable. This gives more succinct and easy to read mocking code.

	Add ShouldWarn and ShouldNotWarn context managers.

4.7.0 (10 December 2015)

	Add the ability to pass raises=False to compare() to just get
and resulting message back rather than having an exception raised.

4.6.0 (3 December 2015)

	Fix a bug that mean symlinked directories would never show up when using
TempDirectory.compare() and friends.

	Add the followlinks parameter to TempDirectory.compare() to
indicate that symlinked or hard linked directories should be recursed into
when using recursive=True.

4.5.1 (23 November 2015)

	Switch from cStringIO to StringIO in OutputCapture
to better handle unicode being written to stdout or stderr.

Thanks to “tell-k” for the patch.

4.5.0 (13 November 2015)

	LogCapture, OutputCapture and TempDirectory now
explicitly show what is expected versus actual when reporting differences.

Thanks to Daniel Fortunov for the pull request.

4.4.0 (1 November 2015)

	Add support for labelling the arguments passed to compare().

	Allow expected and actual keyword parameters to be passed to
compare().

	Fix TypeError: unorderable types when compare() found multiple
differences in sets and dictionaries on Python 3.

	Add official support for Python 3.5.

	Drop official support for Python 2.6.

Thanks to Daniel Fortunov for the initial ideas for explicit expected and
actual support in compare().

4.3.3 (15 September 2015)

	Add wheel distribution to release.

	Attempt to fix up various niggles from the move to Travis CI for doing
releases.

4.3.2 (15 September 2015)

	Fix broken 4.3.1 tag.

4.3.1 (15 September 2015)

	Fix build problems introduced by moving the build process to Travis CI.

4.3.0 (15 September 2015)

	Add TempDirectory.compare() with a cleaner, more explicit API that
allows comparison of only the files in a temporary directory.

	Deprecate TempDirectory.check(), TempDirectory.check_dir()
and TempDirectory.check_all()

	Relax absolute-path rules so that if it’s inside the TempDirectory,
it’s allowed.

	Allow OutputCapture to separately check output to stdout and
stderr.

4.2.0 (11 August 2015)

	Add MockPopen, a mock helpful when testing
code that uses subprocess.Popen [http://docs.python.org/library/subprocess.html#subprocess.Popen].

	ShouldRaise now subclasses object [http://docs.python.org/library/functions.html#object], so that subclasses of it
may use super().

	Drop official support for Python 3.2.

Thanks to BATS Global Markets for donating the code for
MockPopen.

4.1.2 (30 January 2015)

	Clarify documentation for name parameter to LogCapture.

	ShouldRaise now shows different output when two exceptions have
the same representation but still differ.

	Fix bug that could result in a dict [http://docs.python.org/library/stdtypes.html#dict] comparing equal to a
list [http://docs.python.org/library/functions.html#list].

Thanks to Daniel Fortunov for the documentation clarification.

4.1.1 (30 October 2014)

	Fix bug that prevented logger propagation to be controlled by the
log_capture decorator.

Thanks to John Kristensen for the fix.

4.1.0 (14 October 2014)

	Fix compare() bug when dict [http://docs.python.org/library/stdtypes.html#dict] instances with
tuple keys were not equal.

	Allow logger propagation to be controlled by LogCapture.

	Enabled disabled loggers if a LogCapture is attached to them.

Thanks to Daniel Fortunov for the compare() fix.

4.0.2 (10 September 2014)

	Fix “maximum recursion depth exceeded” when comparing a string with
bytes that did not contain the same character.

4.0.1 (4 August 2014)

	Fix bugs when string compared equal and options to compare()
were used.

	Fix bug when strictly comparing two nested structures containing
identical objects.

4.0.0 (22 July 2014)

	Moved from buildout to virtualenv for development.

	The identity singleton is no longer needed and has been
removed.

	compare() will now work recursively on data structures for
which it has registered comparers, giving more detailed feedback on
nested data structures. Strict comparison will also be applied
recursively.

	Re-work the interfaces for using custom comparers with
compare().

	Better feedback when comparing collections.namedtuple() [http://docs.python.org/library/collections.html#collections.namedtuple]
instances.

	Official support for Python 3.4.

Thanks to Yevgen Kovalienia for the typo fix in Mocking dates and times.

3.1.0 (25 May 2014)

	Added RoundComparison helper for comparing numerics to a
specific precision.

	Added unless parameter to ShouldRaise to cover
some very specific edge cases.

	Fix missing imports that showed up TempDirectory had to do
the “convoluted folder delete” dance on Windows.

Thanks to Jon Thompson for the RoundComparison implementation.

Thanks to Matthias Lehmann for the import error reports.

3.0.2 (7 April 2014)

	Document ShouldRaise.raised and make it part of the official
API.

	Fix rare failures when cleaning up TempDirectory instances
on Windows.

3.0.1 (10 June 2013)

	Some documentation tweaks and clarifications.

	Fixed a bug which masked exceptions when using compare() with
a broken generator.

	Fixed a bug when comparing a generator with a non-generator.

	Ensure LogCapture cleans up global state it may effect.

	Fixed replacement of static methods using a Replacer.

3.0.0 (5 March 2013)

	Added compatibility with Python 3.2 and 3.3.

	Dropped compatibility with Python 2.5.

	Removed support for the following obscure uses of
should_raise:

should_raise(x, IndexError)[1]
should_raise(x, KeyError)['x']

	Dropped the mode parameter to TempDirectory.read().

	TempDirectory.makedir() and TempDirectory.write() no
longer accept a path parameter.

	TempDirectory.read() and TempDirectory.write() now
accept an encoding parameter to control how non-byte data is
decoded and encoded respectively.

	Added the prefix parameter to compare() to allow failure
messages to be made more informative.

	Fixed a problem when using sub-second deltas with test_time().

2.3.5 (13 August 2012)

	Fixed a bug in compare_dict() that
mean the list of keys that were the same was returned in an unsorted
order.

2.3.4 (31 January 2012)

	Fixed compatibility with Python 2.5

	Fixed compatibility with Python 2.7

	Development model moved to continuous integration using Jenkins.

	Introduced Tox [http://tox.testrun.org/latest/] based testing to ensure packaging and
dependencies are as expected.

	100% line and branch coverage with tests.

	Mark test_datetime, test_date and
test_time such that nose doesn’t mistake them as tests.

2.3.3 (12 December 2011)

	Fixed a bug where when a target was replaced more than once using a
single Replacer, restore() would not
correctly restore the original.

2.3.2 (10 November 2011)

	Fixed a bug where attributes and keys could not be
removed by a Replacer as described in
Removing attributes and dictionary items if the attribute or key might not be
there, such as where a test wants to ensure an os.environ
variable is not set.

2.3.1 (8 November 2011)

	Move to use nose [http://readthedocs.org/docs/nose/] for running
the TestFixtures unit tests.

	Fixed a bug where tdatetime.now() returned an instance of the
wrong type when tzinfo was passed in
strict mode.

2.3.0 (11 October 2011)

	Replacer, TempDirectory, LogCapture and
TestComponents instances will now warn if the
process they are created in exits without them being cleaned
up. Instances of these classes should be cleaned up at the end of
each test and these warnings serve to point to a cause for possible
mysterious failures elsewhere.

2.2.0 (4 October 2011)

	Add a strict mode to
test_datetime and test_date.
When used, instances returned from the mocks are instances of those
mocks. The default behaviour is now to return instances of the real
datetime [http://docs.python.org/library/datetime.html#datetime.datetime] and date [http://docs.python.org/library/datetime.html#datetime.date] classes
instead, which is usually much more useful.

2.1.0 (29 September 2011)

	Add a strict mode to
compare(). When used, it ensures that
the values compared are not only equal but also of the same
type. This mode is not used by default, and the default mode
restores the more commonly useful functionality where values of
similar types but that aren’t equal give useful feedback about
differences.

2.0.1 (23 September 2011)

	add back functionality to allow comparison of generators with
non-generators.

2.0.0 (23 September 2011)

	compare() now uses a registry of comparers that can be
modified either by passing a registry option to compare()
or, globally, using the register() function.

	added a comparer for set [http://docs.python.org/library/stdtypes.html#set] instances to compare().

	added a new show_whitespace parameter to
compare_text(), the comparer used when comparing
strings and unicodes with compare().

	The internal queue for test_datetime is now considered to
be in local time. This has implication on the values returned from
both now() and utcnow() when
tzinfo is passed to the test_datetime constructor.

	set() and add() on test_date,
test_datetime and test_time now accept instances
of the appropriate type as an alternative to just passing in the
parameters to create the instance.

	Refactored the monolithic __init__.py into modules for each
type of functionality.

1.12.0 (16 August 2011)

	Add a captured property to
OutputCapture so that more complex assertion can be made
about the output that has been captured.

	OutputCapture context managers can now be temporarily
disabled using their disable() method.

	Logging can now be captured only when it exceeds a specified logging
level.

	The handling of timezones has been reworked in both
test_datetime() and test_time(). This is not backwards
compatible but is much more useful and correct.

1.11.3 (3 August 2011)

	Fix bugs where various test_date(), test_datetime() and
test_time() methods didn’t accept keyword parameters.

1.11.2 (28 July 2011)

	Fix for 1.10 and 1.11 releases that didn’t include non-.py files as
a result of the move from subversion to git.

1.11.1 (28 July 2011)

	Fix bug where tdatetime.now() didn’t accept the tz
parameter that datetime.datetime.now() [http://docs.python.org/library/datetime.html#datetime.datetime.now] did.

1.11.0 (27 July 2011)

	Give more useful output when comparing dicts and their subclasses.

	Turn should_raise into a decorator form of
ShouldRaise rather than the rather out-moded wrapper
function that it was.

1.10.0 (19 July 2011)

	Remove dependency on zope.dottedname.

	Implement the ability to mock out dict [http://docs.python.org/library/stdtypes.html#dict] and list [http://docs.python.org/library/functions.html#list]
items using Replacer and
replace().

	Implement the ability to remove attributes and dict [http://docs.python.org/library/stdtypes.html#dict]
items using Replacer and
replace().

1.9.2 (20 April 2011)

	Fix for issue #328: utcnow() of test_datetime()
now returns items from the internal queue in the same way as
now().

1.9.1 (11 March 2011)

	Fix bug when ShouldRaise context managers incorrectly
reported what exception was incorrectly raised when the incorrectly
raised exception was a KeyError.

1.9.0 (11 February 2011)

	Added TestComponents for getting a sterile
registry when testing code that uses zope.component.

1.8.0 (14 January 2011)

	Added full Sphinx-based documentation.

	added a Manuel [http://packages.python.org/manuel/] plugin for
reading and writing files into a TempDirectory.

	any existing log handlers present when a LogCapture is
installed for a particular logger are now removed.

	fix the semantics of should_raise, which should always
expect an exception to be raised!

	added the ShouldRaise context manager.

	added recursive support to TempDirectory.listdir() and added
the new TempDirectory.check_all() method.

	added support for forward-slash separated paths to all relevant
TempDirectory methods.

	added TempDirectory.getpath() method.

	allow files and directories to be ignored by a regular expression
specification when using TempDirectory.

	made Comparison objects work when the attributes expected
might be class attributes.

	re-implement test_time() so that it uses the correct way to
get timezone-less time.

	added set() along with delta and delta_type
parameters to test_date(), test_datetime() and
test_time().

	allow the date class returned by the tdatetime.date() method
to be configured.

	added the OutputCapture context manager.

	added the StringComparison class.

	added options to ignore trailing whitespace and blank lines when
comparing multi-line strings with compare().

	fixed bugs in the handling of some exception types when using
Comparison, ShouldRaise or should_raise.

	changed wrap() to correctly set __name__, along with some
other attributes, which should help when using the decorators with
certain testing frameworks.

1.7.0 (20 January 2010)

	fixed a bug where the @replace decorator passed a classmethod
rather than the replacment to the decorated callable when replacing
a classmethod

	added set method to test_date, test_datetime and test_time to allow
setting the parameters for the next instance to be returned.

	added delta and delta_type parameters to test_date,test_datetime and
test_time to control the intervals between returned instances.

1.6.2 (23 September 2009)

	changed Comparison to use __eq__ and __ne__ instead of the
deprecated __cmp__

	documented that order matters when using Comparisons with objects
that implement __eq__ themselves, such as instances of Django
models.

1.6.1 (06 September 2009)

	@replace and Replacer.replace can now replace attributes that may
not be present, provided the strict parameter is passed as False.

	should_raise now catches BaseException rather than Exception so
raising of SystemExit and KeyboardInterrupt can be tested.

1.6.0 (09 May 2009)

	added support for using TempDirectory, Replacer and LogCapture as
context managers.

	fixed test failure in Python 2.6.

1.5.4 (11 Feb 2009)

	fix bug where should_raise didn’t complain when no exception
was raised but one was expected.

	clarified that the return of a should_raise call will be None
in the event that an exception is raised but no expected
exception is specified.

1.5.3 (17 Dec 2008)

	should_raise now supports methods other than __call__

1.5.2 (14 Dec 2008)

	added makedir and check_dir methods to TempDirectory and added
support for sub directories to read and write

1.5.1 (12 Dec 2008)

	added path parameter to write method of TempDirectory so
that the full path of the file written can be easilly obtained

1.5.0 (12 Dec 2008)

	added handy read and write methods to TempDirectory for
creating and reading files in the temporary directory

	added support for rich comparison of objects that don’t support
vars()

1.4.0 (12 Dec 2008)

	improved representation of failed Comparison

	improved representation of failed compare with sequences

1.3.1 (10 Dec 2008)

	fixed bug that occurs when directory was deleted by a test that
use tempdir or TempDirectory

1.3.0 (9 Dec 2008)

	added TempDirectory helper

	added tempdir decorator

1.2.0 (3 Dec 2008)

	LogCaptures now auto-install on creation unless configured otherwise

	LogCaptures now have a clear method

	LogCaptures now have a class method uninstall_all that uninstalls
all instances of LogCapture. Handy for a tearDown method in doctests.

1.1.0 (3 Dec 2008)

	add support to Comparisons for only comparing some attributes

	move to use zope.dottedname

1.0.0 (26 Nov 2008)

	Initial Release

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	testfixtures 4.12.0 documentation

License

Copyright (c) 2008-2015 Simplistix Ltd
Copyright (c) 2015-2016 Chris Withers

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	testfixtures 4.12.0 documentation

Index

 A
 | C
 | D
 | E
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	

 	add() (testfixtures.tdate method)

 	

 	(testfixtures.tdatetime method)

 	(testfixtures.ttime method)

C

 	

 	captured (testfixtures.OutputCapture attribute)

 	check() (testfixtures.LogCapture method)

 	

 	(testfixtures.TempDirectory method)

 	check_all() (testfixtures.TempDirectory method)

 	check_dir() (testfixtures.TempDirectory method)

 	cleanup() (testfixtures.TempDirectory method)

 	cleanup_all() (testfixtures.TempDirectory class method)

 	clear() (testfixtures.LogCapture method)

 	communicate() (testfixtures.popen.MockPopen method)

 	compare() (in module testfixtures)

 	

 	(testfixtures.OutputCapture method)

 	(testfixtures.TempDirectory method)

 	compare_dict() (in module testfixtures.comparison)

 	

 	compare_generator() (in module testfixtures.comparison)

 	compare_sequence() (in module testfixtures.comparison)

 	compare_set() (in module testfixtures.comparison)

 	compare_simple() (in module testfixtures.comparison)

 	compare_text() (in module testfixtures.comparison)

 	compare_tuple() (in module testfixtures.comparison)

 	compare_with_type() (in module testfixtures.comparison)

 	Comparison (class in testfixtures)

 	create() (testfixtures.TempDirectory method)

D

 	

 	date() (testfixtures.tdatetime class method)

 	diff() (in module testfixtures)

 	

 	disable() (testfixtures.OutputCapture method)

E

 	

 	enable() (testfixtures.OutputCapture method)

G

 	

 	generator() (in module testfixtures)

 	

 	getpath() (testfixtures.TempDirectory method)

I

 	

 	install() (testfixtures.LogCapture method)

K

 	

 	kill() (testfixtures.popen.MockPopen method)

L

 	

 	listdir() (testfixtures.TempDirectory method)

 	log_capture() (in module testfixtures)

 	

 	LogCapture (class in testfixtures)

M

 	

 	makedir() (testfixtures.TempDirectory method)

 	

 	MockPopen (class in testfixtures.popen)

N

 	

 	not_there (in module testfixtures)

 	

 	now() (testfixtures.tdatetime class method)

O

 	

 	OutputCapture (class in testfixtures)

P

 	

 	path (testfixtures.TempDirectory attribute)

 	

 	poll() (testfixtures.popen.MockPopen method)

R

 	

 	raised (testfixtures.ShouldRaise attribute)

 	RangeComparison (class in testfixtures)

 	read() (testfixtures.TempDirectory method)

 	register() (in module testfixtures.comparison)

 	Replace (class in testfixtures)

 	

 	replace() (in module testfixtures)

 	

 	(testfixtures.Replacer method)

 	Replacer (class in testfixtures)

 	restore() (testfixtures.Replacer method)

 	RoundComparison (class in testfixtures)

S

 	

 	send_signal() (testfixtures.popen.MockPopen method)

 	set() (testfixtures.tdate method)

 	

 	(testfixtures.tdatetime method)

 	(testfixtures.ttime method)

 	set_command() (testfixtures.popen.MockPopen method)

 	set_default() (testfixtures.popen.MockPopen method)

 	should_raise (class in testfixtures)

 	

 	ShouldNotWarn (class in testfixtures)

 	ShouldRaise (class in testfixtures)

 	ShouldWarn (class in testfixtures)

 	StringComparison (class in testfixtures)

T

 	

 	tempdir() (in module testfixtures)

 	TempDirectory (class in testfixtures)

 	terminate() (testfixtures.popen.MockPopen method)

 	test_date() (in module testfixtures)

 	

 	test_datetime() (in module testfixtures)

 	test_time() (in module testfixtures)

 	today() (testfixtures.tdate class method)

U

 	

 	uninstall() (testfixtures.LogCapture method)

 	uninstall_all() (testfixtures.LogCapture class method)

 	

 	utcnow() (testfixtures.tdatetime class method)

W

 	

 	wait() (testfixtures.popen.MockPopen method)

 	wrap() (in module testfixtures)

 	

 	write() (testfixtures.TempDirectory method)

 Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

 _static/down.png

_static/up.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		testfixtures 4.12.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008-2015 Simplistix Ltd, 2016 Chris Withers.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

